

VII INTERNATIONAL SEMINAR

BIOPOLYMERS AND SUSTAINBLE COMPOSITES

4-5 MARCH 2020

EXTRACTION AND
PURIFICATION OF PHA:
CONVERTING DIVERSE
WASTE-DERIVED MATERIALS
INTO USEFUL PRODUCTS

Bruno Sommer Ferreira

BIOTREND SA

Process development and optimization

- Devise cultivation strategies aiming at maximizing productivities, yields and titers.
- Advanced process optimization strategies.
- Process integration with raw material pre-processing and with downstream processing.

Process scale-up, de-risking and validation

- 2L, 10L, 50L and 250L bioreactors available for thorough scale-up studies and process derisking.
- Connection to facilities with 1,000L to 200,000L fermentation capacity.

Real-life materials

Real-life materials

Real-life materials

Motivation

Poly(4-hydroxybutyrate)

Poly(4-hydroxyvalerate)

Polyhydroxyalkanoates: biodegradable biopolyesters

n = 1	R = hydrogen	Poly(3-hydroxypropionate)
	R = methyl	Poly(3-hydroxybutyrate)
	R = ethyl	Poly(3-hydroxyvalerate)
	R = propyl	Poly(3-hydroxyhexanoate)
	R = pentyl	Poly(3-hydroxyoctanoate)

R = hydrogen

R = methyl

Poly(3-hydroxydodecanoate)

Biotrend SA® 2020

R = nonyl

Commercial PHA production today

- Pure cultures
- Refined raw materials (sugars or oils), competing with food use
- Very limited material grades, particularly in scl-PHA (PHB and PHBV with very low HV incorporation) with limited ranges of properties and processing windows
- High production costs (raw materials and purification) limit market penetration, particularly if "drop-in" applications are envisaged
- Just a handful of "true" manufacturers exist

Research drivers

- Use of industrial side-streams or wastes as raw material
 - Cheaper raw materials, but...
 - Heterogenous and complex streams with varying composition

Varying yields, polymer content and composition

Massive challenges for purification

- Cost-competitive purification processes, preferably aqueous-based
 - Application at decentralised locations (including fairly low scale)
 - Complying with existing regulatory landscape and permits
 - Use standard and readily available equipment, preferably equipment routinely used on-site, not requiring special training for the plant operators

PHA in the biomass

PHA in the biomass

Wheat straw hydrolysate | Pure culture | Acid digestion

- Dry biomass: 130 g/L

PHB concentration: 71 g/L

- PHB content: 56%

Cesário et al. (2014) New Biotechnology, Volume 31, 104-113

	Mw, kDa	Tm, °C	ΔHm, J/g	Tc, °C	ΔHc, J/g
Commercial PHB	739	176	107	52	19
Chloroform extraction	784	179	97		
Acid digestion	674	175	88	72	35

Pure culture 2

SSL | Pure culture | Alkaline + bleach digestion

- Dry biomass: 28 g/L

PHB concentration: 12 g/L

- PHB content: 43%

	Mw, kDa	Tm, ºC	ΔHm, J/g
Commercial PHB	739	176	107
Sugars Alkaline + bleach	1278	174	98
SSL Alkaline + bleach	625	174	85

Recovered biomass Washed biomass

- Lignosulphonates
- Cellular material
 - N (proteins)
 - P (DNA, RNA, nucleotides)
 - PHB

Bio-based Flame Retardant

Mixed cultures

PHA production from wastewater treatment

www.smart-plant.eu

Mixed cultures

PHA PHA production from wastewater treatment monomers Acetic acid digester Carbon source (VFA) for PHA production Hydroxybutyrate fermenter drum Butyric acid **VFAs** VFA rich liquid separation Hydroxy-Propionic acid valerate Valeric acid = Pentanoic acid precipitation reactor **VFAs** A-SBR aerobic PHA anoxic Pilot plant at denitritation PHA storing MOs $NO_2 > N_2$ the Carbonera **SMART-Plant** WWTP (Italy)

SMART Product: PHA-rich sludge

Very diluted material, even after centrifugation

Very diluted material, even after centrifugation

Significant specification variations of the mixed culture

Significant specification variations of the mixed culture

DS: Dry solids %PHA/DS

Benchmark protocols

- Use of organic solvents, particularly chlorinated such as chloroform
- Use of bleach = sodium hypochlorite (NaClO)
 - When used on organic samples may generate trihalomethanes, particularly chloroform, and haloacetic acids.
 - Typical smell detected on the resulting polymer powder (relevant for processing and final use).
 - Residual chlorine will cause significant corrosion issues to processing equipment, particularly above PHA melting temperature.

Alternative protocol developed by Biotrend

- In situ production of reactive species that degrade cellular biomass
- Depending on the biomass, no surfactant is required
- Significant reduction in amounts of chemicals is possible
- No "swimming pool" smell
- Room temperature digestion
- Easy implementation in stirred vessels and solid-liquid separations

Alternative protocol developed by Biotrend

- Process needs to be tuned depending on the PHA-containing biomass

	Batch	%PHA	%HB	%HV	Pellet DW/WW (g/g)
Acetic acid	Batch A, 01/03	53.4	100	0	0.16
Sludge	Batch B, 02/04	36.4	74	21	0.18
Sludge	Batch C, 26/04	35.1	-	-	0.20
Sludge	Batch D, 10/05	32.3	59	41	-

Effect of the process on the polymer

Materials:

Nova: Fruit waste

- U.Roma: MWWTP

Protocol	Biomass	GC Purity / Ph	TGA IA content	GPC Mw
		(%)	(%)	(kDa)
Placeh	U. Nova	102	100	366
Bleach	U. Roma	85	86	217
Madified blooch protocol	U. Nova	101	98	405
Modified bleach protocol-	U. Nova	103	100	414
1 st gen Biotrend	U. Nova	96	87	458
2nd can Diatrond	II Nove	100	95	366
2 nd gen Biotrend	U. Nova	92	94	327

Effect of the process on the polymer

CHCI ₃	Extracted	Decrease	Method
MW (Da)	MW (Da)		
336	235	30%	Bleach
389	241	38%	1st gen Biotrend
397	309	22%	1st gen Biotrend/controlled
336	308	8.3%	Biotrend 50% Reagents
336	309	8.1%	Biotrend 25% Reagents

PHA extraction

Effect of the process on the polymer

GPC

After Biotrend extraction

Mn Mw		Mp	Mw/Mn	
267486	506515	697350	1.89	

1	Mn	Mw	Mp	Mw/Mn
	163707	432960	433721	2.64

Effect of the process on the polymer

	Native poly	After e	After extraction		
	HB wt.%	HV wt.%	HB wt.%	HV wt.%	
ACC53	88%	12%	86%	14%	
ACC55	66%	34%	69%	31%	
ACC57	37%	63%	39%	61%	
ACC64	77%	23%	77%	23%	
ACC71	64%	36%	62%	38%	

Effect of the process on the polymer

- No changes in the monomeric composition of the polymer
- Preservation of the MW achieved.
- Conditions can be tuned to modulate the MW of the polymer
- Low molecular weight / low viscosity material obtained used as adhesive in multilayer packaging CSIC
- kg-scale pellet production successful
- Yields > 85%

🐠 iata

Scale-up

- Scale-up successful
- **Transition towards** continuous operation
- Shorter residence times and lower chemicals consumption possible in larger scale
- Towards >100 kg polymer production target

- 1: Membrane housing
- 2: Feed tank
- 3: Permeate tank
- 4: Pump

- 1: Digestion vessel
- 2: Reagent IBC
- 3: Tangential flow membrane unit
- 4: Permeate tank

Aqueous extraction of PHAs

Biomass sources:

- Pure cultures:
 - Fermented on refined sugars
 - Fermented on residues, including lignocellulosic hydrolysates, side-streams of the pulp and paper industry, glycerol from the biodiesel industry, VFAs from anaerobic digestion
- Mixed cultures:
 - Municipal waste treatment, cheese manufacturing waste, fruit processing waste

Application validation:

- Melt extrusion
- Casting
- 3D printing
- Preserves MW
- White product

Aqueous extraction of PHAs

On going work:

- Stream recycle within the PHA purification process
- Continuous operation for CAPEX and OPEX reduction
- Integration opportunities of the purification process with the PHA-containing biomass producing operation (ex. water, energy)
- Full characterization of the aqueous stream with the digested biomass and proper recycle, reuse or disposal

Acknowledgements

Upstream partners:

- U. of Verona
- U. Nova de Lisboa
- U. Roma La Sapienza
- U. Ca Foscari of Venice
- Innoven SRL
- Avecom
- Aqualia
- Biorefinery.de
- Borregaard
- Portucel/Soporcel
- Sniace
- Monaghan Bio
- Commercial partners

Downstream partners:

- AIMPLAS
- **Brunel University**
- Ecodek
- Fraunhofer-ICT
- Bioinicia
- IATA/CSIC
- U. Minho
- Sabio Materials
- Mi-Plast
- INRA
- Daren Labs
- AIMEN
- U. Liége

@Biotrend:

- Hugo Almeida
- João Cavalheiro
- Joshua Anjos
- Marina Pires
- Diogo Figueira

Contacts:

Bruno Sommer Ferreira +351 231 410 940 bsferreira@biotrend.pt www.biotrend.pt

