Journal Pre-proof

A knowledge discovery framework to predict the N₂O emissions in the wastewater sector

V. Vasilaki, V. Conca, N. Frison, A.L. Eusebi, F. Fatone, E. Katsou

PII: S0043-1354(20)30336-5

DOI: https://doi.org/10.1016/j.watres.2020.115799

Reference: WR 115799

To appear in: Water Research

Received Date: 17 December 2019

Revised Date: 4 March 2020

Accepted Date: 3 April 2020

Please cite this article as: Vasilaki, V., Conca, V., Frison, N., Eusebi, A.L., Fatone, F., Katsou, E., A knowledge discovery framework to predict the N₂O emissions in the wastewater sector, *Water Research* (2020), doi: https://doi.org/10.1016/j.watres.2020.115799.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1 A knowledge discovery framework to predict the N₂O emissions in the wastewater sector

2

V. Vasilaki¹, V. Conca², N. Frison², A.L. Eusebi³, F. Fatone³, E. Katsou^{1*}

- ¹ Department of Civil & Environmental Engineering, Brunel University London, Uxbridge UB8
 3PH, UK,
- ⁵ ² Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy,
- ⁶ ³ Department SIMAU, Faculty of Engineering, Polytechnic University of Marche, Via Brecce

7 Bianche 12, Ancona, Italy

- 8 *Corresponding author. Email: evina.katsou@brunel.ac.uk
- 9 Keywords: short-cut enhanced nutrients abatement SCENA; long-term dissolved N₂O and
- 10 energy consumption monitoring, knowledge discovery and data mining

11

Abstract

12 Data Analytics is being deployed to predict the dissolved nitrous oxide (N_2O) concentration in a 13 full-scale sidestream sequence batch reactor (SBR) treating the anaerobic supernatant. On 14 average, the N₂O emissions are equal to 7.6% of the NH₄-N load and can contribute up to 97 % to 15 the operational carbon footprint of the studied nitritation-denitritation and via-nitrite enhanced 16 biological phosphorus removal process (S.C.E.N.A). The analysis showed that average aerobic dissolved N₂O concentration could significantly vary under similar influent loads, dissolved 17 oxygen (DO), pH and removal efficiencies. A combination of density-based clustering, support 18 19 vector machine (SVM), and support vector regression (SVR) models were deployed to estimate the dissolved N₂O concentration and behaviour in the different phases of the SBR system. 20

21 The results of the study reveal that the aerobic dissolved N₂O concentration is correlated with the 22 drop of average aerobic conductivity rate (spearman correlation coefficient equal to 0.7), the DO 23 (spearman correlation coefficient equal to -0.7) and the changes of conductivity between 24 sequential cycles. Additionally, operational conditions resulting in low aerobic N₂O accumulation 25 (<0.6 mg/L) were identified; step-feeding, control of initial NH_4^+ concentrations and aeration duration can mitigate the N₂O peaks observed in the system. The N₂O emissions during aeration 26 27 shows correlation with the stripping of accumulated N_2O from the previous anoxic cycle. The 28 analysis shows that N₂O is always consumed after the depletion of NO₂⁻ during denitritation (after 29 the "nitrite knee"). Based on these findings SVM classifiers were constructed to predict whether 30 dissolved N₂O will be consumed during the anoxic and anaerobic phases and SVR models were 31 trained to predict the N_2O concentration at the end of the anaerobic phase and the average 32 dissolved N₂O concentration during aeration. The proposed approach accurately predicts the N₂O 33 emissions as a latent parameter from other low-cost sensors that are traditionally deployed in 34 biological batch processes.

35 1. Introduction

36 In recent years the sustainability and operational efficiency of wastewater treatment plants 37 (WWTPs) have come to the fore (Liu et al., 2018). Several biological technologies such as 38 partial-nitritation - anammox (anaerobic ammonium oxidation) have emerged, towards the 39 efficient, low-cost treatment of high-strength municipal wastewater streams (Lackner et al., 2014; 40 Zhou et al., 2018). The anaerobic supernatant is a by-product of dewatering of the anaerobic digestion effluent and represents less than 1-2% of the total influent flow in the WWTP. It 41 contains 10-30% of the N load and 20-30% of the P load (Janus and van der Roest, 1997; van 42 43 Loosdrecht and Salem, 2006). Sidestream treatment of the anaerobic supernatant can contribute to the reduction of energy consumption for N-removal, decrease of nitrogen loads in the secondary 44 45 treatment, and the minimisation of risks related to exceeding effluent regulatory requirements of 46 nitrogen concentrations in the water line of WWTPs (Eskicioglu et al., 2018). However, the 47 performance and environmental evaluation of different sidestream technologies is still under investigation (Eskicioglu et al., 2018; Rodriguez-Garcia et al., 2014). 48

49 SCENA (Short-Cut Enhanced Nutrient Abatement) is a new sidestream process, that combines 50 the conversion of NH_4^+ to NO_2^- under aerobic conditions (nitritation) with the subsequent 51 reduction of NO₂⁻ to nitrogen gas and enhanced biological phosphorus uptake by polyphosphate-52 accumulating organisms (DPAOs) in a sequencing batch reactor (SBR) (Frison et al., 2015). 53 External volatile fatty acids (VFAs), are produced via acidogenic fermentation of the primary and 54 secondary sludge on-site and dosed into the SBR. In a recent study, Longo et al. (2016), quantified the environmental and cost benefits and impacts of the integration of the SCENA 55 process in a full-scale WWTP. They reported major energy savings for aeration after the 56 57 integration of sidestream SCENA process. The direct N₂O emissions were equal to 1.42% of the

Journal Pre-proo

influent N-load. Short-term monitoring campaigns were implemented, while the effect of operational conditions on N_2O generation was not investigated.

 N_2O is a potent cause of global warming, its global warming potential is 265 - 298 times more 60 61 than that of CO₂ (IPCC, 2013). The emission of N₂O in full-scale sidestream partial-62 nitritation/partial-nitritation-anammox or nitrification-denitrification systems range from 0.17% 63 to 5.1% of the influent N-load (average equal to $\sim 2.1\%$ of the N-load is emitted (Vasilaki et al., 2019) . Schaubroeck et al. (2015) showed that N₂O emissions from a full-scale sidestream 64 DEMON process in Austria were significantly higher than the direct N₂O emissions from the 65 66 mainstream treatment in a full-scale WWTP. On average, 0.256 g N₂O were emitted compared to 0.005 g emitted in the secondary treatment per m^3 treated wastewater. The increased direct N₂O 67 emissions can be mainly attributed to low DO concentrations, higher ammonia oxidation rates 68 69 (AOR) and NO_2^- build-up (Desloover et al., 2011; Kampschreur et al., 2008); conditions that also 70 prevail in the SCENA process. The variability of EF reported in sidestream technologies can be 71 partially attributed to both complex relationships between emitted N₂O and operational conditions and different configurations (i.e. SBR, continuous systems), loads (i.e. NH₄⁺ concentrations), 72 73 feeding strategies and operational control (i.e. DO set-points). Additionally, different interactions 74 between operational variables trigger a different response of N₂O generation. For instance, in a 75 recent modelling study of a granular one-stage partial-nitritation-anammox reactor, Wan et al. 76 (2019) showed that higher temperatures resulted in increased N_2O emissions in the presence of 77 COD (chemical oxygen demand) and in decreased N_2O emissions in the absence of COD (due to 78 increased anammox activity and reduction of NO2⁻ accumulation in higher temperature). 79 Additionally, the long-term temporal variations of direct N_2O emissions were not adequately 80 assessed in sidestream technologies; the majority of the monitoring campaigns in sidestream 81 reactors lasted less than 5 days (Vasilaki et al., 2019).

Journal Pre-proo

82 The digitalisation of water services and the data-driven knowledge discovery from wastewater treatment plant may increase the resilience of water utilities under climate change and other 83 84 water-related challenges (Sarni et al., 2019). Recent studies have provided extensive overviews of 85 the use of data-driven techniques in the wastewater sector for different applications including the development of soft-sensors, fault prediction and multi-objective optimisation of control of water 86 87 utilities (Corominas et al., 2018a; Haimi et al., 2013; Newhart et al., 2019). Data-mining and 88 extraction of the information hidden in the raw sensor signals can facilitate the identification of 89 patterns and hidden structures and reveal significant information on the behaviour of N₂O 90 emissions in continuous wastewater treatment processes (Vasilaki et al., 2018). The SBR in the 91 SCENA process is multiphase (i.e. anaerobic, aerobic, anoxic conditions) applying different 92 operational variables (unsynchronised data), non-linear and subject to different disturbances, such 93 as influent compositions and fermentation liquid characteristics. Moreover, SBR process data are 94 based on a 3d-structure that consists of the number of i) cycles, ii) variables and iii) sampling 95 points within each cycle. Therefore, the identification of process abnormalities and patterns can 96 be complicated. N₂O emissions could be affected by both within-cycle and between-cycle batch 97 dynamics.

In this study, sensor and laboratory analyses data from a full-scale SCENA SBR were analysed to provide insights on the N_2O emissions behaviour and generation. A structured approach was followed for knowledge discovery from the available dataset using a combination of abnormal events detection, classification and regression techniques. The objectives of the study were to i) investigate whether the sensors integrated in the system (i.e. conductivity, pH) can provide actionable information on the dynamics of N_2O emissions, ii) detect hotspots for the accumulation and emission of N_2O and iii) develop data-driven regression and classification 105 models to predict the dissolved N_2O behaviour and concentration for the different phases 106 (anaerobic, aerobic, anoxic) of the SBR.

107 2. Materials and Methods

108 2.1 Process description and data origin

109 The Carbonera plant is designed to treat domestic wastewater of a population equivalent of 110 40,000 (dry weather flow equal to 10,000 m^3 /d). After screening and degritting and primary 111 sedimentation, the effluent from the primary clarifier is sent to a Schreiber reactor (single basin – 112 working volume 4671 m^3). Schreiber reactor effluent is pumped to two secondary clarifiers (2260 113 m^3 each) and subsequently to the tertiary treatment unit for disinfection and filtration before final 114 discharge in the Melma River.

Waste activated sludge (WAS) generated by the biological treatment is recycled to the primary sedimentation unit and mixed with primary sludge. The final concentration of the thickened mixed sludge is around 5% total solids (TS). About 90% of the mixed thickened sludge is fed to an anaerobic digestion unit (1800 m³ working volume). Digestate is dewatered by a centrifuge with the addition of polyelectrolyte; the solid fraction is mechanically composted and used as agricultural fertilizer. The anaerobic supernatant is sent to the equalization tank (of 90 m³) in the SCENA system for the biological N and P removal.

The remaining portion of mixed sludge (10%) is fed to a sequencing batch fermentation reactor (SBFR) with hydraulic retention time (HRT) equal to 5 days. The SBFR is operated under mesophilic condition (37°C) for the alkaline fermentation of thickened sewage sludge and the onsite production of carbon source enriched of VFAs (mainly acetic and propionic acids). Daily, 10 m^3 of fermentation sludge are extracted and replaced with fresh thickened sludge. The solid/liquid separation of the fermented sewage sludge is carried out by a screw-press (SCAE), generating ~2128

storage tank of 20 m³ and automatically dosed during the anaerobic and anoxic phases of a shortcut sequencing batch reactor (SBR) based on pH and conductivity sensors. The solid fermented fraction (13-15% TS based) is mixed with the thickened mixed sludge and fed to the anaerobic digestor.

133 The anaerobic supernatant is treated in an SBR with a maximal working volume of 70 m³ (3-4 cycles daily). The SBR is fed with $\sim 10-15 \text{ m}^3$ of anaerobic supernatant in each cycle that is 134 treated via nitrite enhanced phosphorus removal associated with nitritation-denitritation 135 136 (S.C.E.N.A process). The typical SBR (Figure 1) cycle consists of feeding (6-8 min), anaerobic 137 conditions (30 min), aerobic conditions (200-240 min), anoxic (~60-140 min), settling (30 min) and discharge (8 min). The sensors integrated in the SBR include: pH, Dissolved Oxygen (DO), 138 conductivity, Oxidation Reduction Potential (ORP), mixed liquor suspended Solids (MLSS) and 139 140 temperature. Conductivity and pH are used to control the length of the aerobic and anoxic phases 141 and the carbon source dosage. Additionally, variable frequency driver is used to control the air 142 flow-rate of the blowers, maintaining the dissolved oxygen during aerobic phase in the range of 143 1.0 to 1.5 mg/L. The aeration system consists of volumetric blowers (nominal power 11 kW) and n80 diffusers (INVENT), providing ~500 m³/h of compressed air at 400 mbar of pressure. The 144 145 treated supernatant is recirculated back to the WWTP headworks.

A monitoring campaign was conducted in the sidestream line at Carbonera WWTP treatment plant for approximately 4 months (January 2019 – April 2019). Dissolved N₂O concentrations were measured using a polarographic Clark-type electrode (Unisense, Aarhus, Denmark). To supplement the long-term monitoring campaign with Unisense probes, N₂O emissions in the headspace of the SBR reactor, were also continuously monitored with MIR9000CLD analyser (Environment Italia S.p.A.) during March – April 2019. Details of the monitoring campaign, N₂O

- emissions' calculation and laboratory analyses are provided in the supplementary material (S1-S3).
- 154

[Figure 1]

- 155 2.2 Data analysis
- 156

5 2.2.1 Methodological Framework

157 Figure 2 summarises the methodological framework of the study. Phase one includes preliminary analysis of the collected data. Features extraction and density-based clustering was applied (Ester 158 et al., 1996), to isolate abnormal cycles. The methodology and results of abnormal cycles' 159 160 isolation are given in the supplementary material (section S4). In phase two, the behaviour of 161 N₂O emissions and dissolved N₂O concentration during normal operation was investigated; efforts were focused to identify dependencies with the operational dataset and laboratory 162 163 analyses. Finally, in phase three, classification and regression models were trained to predict the 164 behaviour of aerobic dissolved N₂O concentration in the different cycles. A support vector machine classification (SVM) and regression (SVR) models were constructed (Cortes and 165 166 Vapnik, 1995).

The first step for the prediction of the average aerobic dissolved N₂O concentration included the 167 168 training of an SVM classifier (ANOXSVM) to predict whether dissolved N₂O will be consumed during the anoxic phase. This was significant, given that accumulated dissolved N₂O in the 169 beginning of the aerobic phase, will be stripped during aeration. All cycles were divided in two 170 171 classes: class anoxA (dissolved $N_2O < 0.6 \text{ mg/L}$) and class anoxB (dissolved $N_2O > 0.6 \text{ mg/L}$). 172 The dissolved N₂O concentration threshold was set equal to 0.6 mg/L, since in $\sim 88\%$ of these 173 cases, N₂O was consumed by the end of subsequent anaerobic phase. In cycles belonging to class 174 anoxA, no N₂O carryover was assumed. It is important to note that the term anaerobic phase, is 175 used to describe the first operational phase of the SBR (Figure 1) within each cycle and is not 176 necessarily representative of the actual conditions in the reactor.

Subsequently, an SVM classifier (ANSVM) was trained to predict if dissolved N₂O will be consumed in the subsequent anaerobic phase. The threshold of N₂O at the end of the anaerobic phase was set equal to 2.6 mg/L (sensor calibration limit). Therefore, anaerobic phases with accumulated N₂O were classified in two groups: class anaerA (N₂O concentration < 2.6 mg/L) and anaerB (N₂O concentration > 2.6 mg/L). Cycles belonging to anaerA class, were used to train an SVR model (ANSVR) to predict the dissolved N₂O concentration at the end of the anaerobic phase.

184 Finally, an SVR model was trained to predict the average N₂O concentration during the aerobic phase (AERSVR), utilizing the ANSVR model predictions for cycles with initial aerobic N₂O less 185 than 2.6 mg/L. Finally, the aerobic SVR model was also tested to cycles belonging in class 186 anaerB (N_2O concentration > 2.6 mg/L). In anaerB cycles, initial aerobic N_2O accumulation 187 188 exceeds the calibration limit of the sensor. Additionally, aerobic N₂O accumulation starts before 189 completion of the stripping of pre-existing dissolved N₂O. In these cases, the average dissolved 190 N₂O concentration of the cycle, was calculated considering the period from the first minimum of 191 dissolved N₂O concentration until the end of aeration (or after 30 min if a local minimum did not 192 exist). Additionally, initial N_2O accumulation was assumed to be equal to 0.6 mg/L (average 193 minimum after initial N₂O stripping observed in these cycles).

In practice, the methodology followed was not linear as it is illustrated in Figure 2; it involves several backward and forward loops between the different steps. The feedback loops were necessary to leverage the knowledge discovered and adjust the data-preparation (i.e. new features extraction, different pre-processing) and mining phases.

[Figure 2]

199 2.2.1 Support Vector Machines classification and Support vector regression

Support vector machines (SVMs) are a range of supervised non-parametric classification and regression algorithms that have various applications in several fields including hydrology (Raghavendra and Deka, 2014), bioinformatics (Byvatov and Schneider, 2003) and wastewater (Corominas et al., 2018). For instance, in wastewater, support vector regression (SVR) has been successfully applied to data generated from mechanistic modelling of biological processes (Fang et al., 2011) or to experimental data (Seshan et al., 2014) to predict reactors' performance.

206 SVM classification and SVR models were constructed to predict the behaviour of dissolved N₂O 207 production/consumption in different phases of the SBR operation (Figure 2). SVM aims to define 208 an optimum separating hyperplane in the feature space that maximizes the margin between two 209 different classes. Classes with large margins are clearly separable and provide a 'safety' for the generalisation of the algorithm when applied to new points. In practical applications, the 210 211 overlapping of a number of data belonging to the two classes, is common. Therefore, soft margins 212 are introduced to allow a number of misclassifications to identify feasible solutions when the 213 training dataset is not strictly linearly separable. Similarly, in the SVR case, the aim of the 214 method is to identify the hyperplane that has the minimum distance to all data points. A complete 215 description of the SVM and SVR algorithms is provided in the supplementary material. Radial 216 basis function (RBF) was selected to construct the models in this study. The 'kernel trick' and 217 enables SVMs to operate even in infinite feature space (where data are mapped), without in 218 practice executing calculations there (Luts et al., 2010).

The algorithms were implemented with the kernlab package (Karatzoglou et al., 2004) in R software. Repeated 10-fold cross validation (3 repetitions) was applied to select the cost and

Journal Pre-proo

gamma (γ) regularization parameters over a grid-search with the caret package (Kuhn, 2008). The cost determines the penalty of misclassified instances or instances violating the maximal margin whereas γ determines the amplitude of the kernel. The dataset was randomly divided into test and train, with 70% of the available data used for training the SVM model and 30% used for testing.

225 In the classification case, over-sampling was applied for the minority classes within the 10-fold 226 cross validation loop (before training). Local models were developed based on observations from 227 each phase of the SBR reactor instead of the dataset from the duration of the whole cycle. The underlying characteristics and dependencies of the operational variables vary between anoxic, 228 229 aerobic and anaerobic conditions. Additionally, the performance of the system under different 230 phases within the cycle can also vary. There are significant benefits in the development of local phase-based models. The behaviour of dissolved N₂O and triggering operational conditions vary 231 232 between the different phases; local models enable to investigate the phase-based dependency 233 structures that would not be possible using the whole cycle dataset. The performance of the 234 classification SVM models were evaluated based on accuracy and kappa and from the sensitivity 235 and specificity as described in the supplementary material (S3.1). Similarly, the regression 236 models were evaluated considering the root mean squared error (RMSE) and R-squared (R^2) 237 (S3.1).

238 **3. Results and discussion**

239 3.1 SCENA performance

The SBR treats up to 43 kg of N/day of anaerobic supernatant, which results in a volumetric nitrogen loading rate up to 0.78 kgN/m³ day. The performance of the SBR reactor in terms of NH₄-N removal, was stable during the monitoring campaign. During system's normal operation (January 2019 - April 2019), the average removal efficiency of NH₄-N, TN and PO₄-P was 78%, ~77% and 84% respectively. Influent and effluent concentrations of the SCENA system for the
duration of the monitoring campaign are provided in Table 1. A detailed description of the
abnormal cycles isolated is provided in the supplementary material

247

[Table 1]

248 3.2 N₂O Emission factor

249 N_2O emissions were measured using a gas analyser (March – April 2019); on average ~0.8 kg of N₂O-N was emitted in each cycle, equivalent to 7.6% of the NH₄-N load in the SBRR. In terms 250 251 of the NH₄-N removed the N₂O EF was equal to 11% (\pm 4). The emissions during the aerobic phase were considered. N₂O emissions exhibited significant variability ranging from 0.14 kg 252 253 N₂O-N/cycle (1.3% of NH₄-N load) to ~2 kg N₂O-N/cycle (19% of NH₄-N load) as shown in Figure 3 (a). Emission peaks higher than 1.5 kg N₂O-N/cycle and the increasing trend observed 254 255 close to the end of the monitoring campaign coincide with peaks in the conductivity change in the 256 aerobic phase of the cycles (Figure 3 (b)). Laboratory analyses performed approximately four times per week, did not demonstrate any significant changes in the influent COD, NH₄-N loads 257 258 and removal efficiencies linked with the increasing trend of the emissions observed in Figure 3 259 (a). Given the wide range of the N_2O emissions observed in the system, in the following sections, efforts were focused to identify triggering operational conditions. 260

261

[Figure 3]

262 **3.3** Energy consumption vs N₂O emissions

The operational carbon footprint of the sidestream line was estimated using the direct GHG emissions (from N_2O) and electricity consumption. The electricity consumption was relatively steady over the monitoring period; on average ~5.4 kWh was consumed in the SBR for the removal of 1 kg of NH₄-N from the anaerobic supernatant. The average energy consumption of 267 the SBR represented ~77% of the total electricity consumption of the SCENA system. On average ~48.7 kg of CO_{2eg} are generated for the removal of 1 kg of NH₄-N due to the direct N₂O 268 269 emissions and electricity consumption in the system. The contribution of the total N₂O emissions 270 to the operational carbon footprint of the S.C.E.N.A process ranged from 66.7% to 96.8% when 271 all the equipment electricity consumption (i.e. fermenter, dynamic thickener) were considered. 272 Given the variability of the N_2O emissions observed in the system (Figure 3) the kg of CO_{2eq} 273 emitted per kg of NH₄-N removed ranged between 9.5 kg CO_{2ea} to 117.7 kg CO_{2ea}. Figure 4 (a), 274 shows the average operational carbon footprint (considering direct N₂O emissions and electricity 275 consumption) of the SCENA system for two cases with different ranges of N₂O emissions. In the 276 first case (26/03), a considerable amount of N_2O was emitted, equal to ~10.5% of the influent 277 NH_4 -N load. In the second case, the emissions were significantly lower, equal to ~4% of the 278 influent NH₄-N load. Both cases are characterised by similar influent NH₄-N concentrations, 279 phase duration, temperature and ammonia removal efficiencies (~79%). The DO concentration is 280 equal to ~1 mg/L. In case 1, the operational carbon footprint of the process is ~136% higher 281 compared to case 2. This example shows that under similar conditions (considering laboratory 282 analyses, average pH and DO), dissolved N₂O concentrations can vary significantly in the studied 283 system. Investigation of the behaviour of conductivity during the two aerobic phases, showed higher conductivity and pH decrease in case one (~ 510 µS/cm and ~1 respectively) compared to 284 285 case two (\sim 350 µS/cm and 0.7 respectively) (Figure 4 (b) and (c)). Additionally, the initial aerobic ORP in case 2, was higher (-43 mV) compared to case 1 (-274 mV) (Figure 4 (b)). 286 Therefore, efforts to understand the N₂O triggering operational conditions and mitigate GHG 287 288 emissions, should consider the dynamic in-cycle behaviour of the variables monitored in the system. The relationship between the operational variables (i.e. DO, NH₄-N concentration, ORP, 289 290 conductivity) will be discussed in the following sections.

20	1
27	T

[Figure 4]

292 **3.4** Variability of N₂O emissions during normal operation

 N_2O was emitted during aeration phase in all cycles and correlated significantly with the dissolved N_2O accumulation. One representative cycle profile for the dissolved N_2O concentration and N_2O emissions in cycles starting without dissolved N_2O accumulation from the previous cycle is shown in Figure 5, together with the DO, NH₄-N, conductivity, ORP and pH.

297 ORP at the beginning of the aerobic phase shows a correlation with the DO, whereas N₂O 298 accumulation is minimum. Dissolved N₂O increases in the first 60-70 min of aeration (a small 299 change in the pH slope can be seen coinciding with the peak of accumulated N₂O) indicating that the generated N_2O generation is higher than the stripped N_2O . N_2O accumulation shows a 300 301 decreasing trend after ~90 minutes of aeration. Subsequently dissolved N₂O concentration 302 increases when aeration stops, and the anoxic phase starts. This shows that production of N₂O 303 continues under decreasing DO and until DO depletion. The calibration range of the dissolved 304 N_2O probe is between 0 - 2.6 mg/L. Therefore, the accumulation of dissolved N_2O can be higher 305 than the peak shown in Figure 5. During the anoxic phase, pH increases rapidly during the dosage 306 of fermentation liquid, followed by a slow decrease upon the end of carbon dosage phase. A 307 sudden change in the ORP signal slope ('nitrite knee') indicates the depletion of nitrite whereas 308 TN still exists in the form of N_2O . Accumulated N_2O is subsequently depleted rapidly after NO_2^{-1} 309 N depletion.

310

[Figure 5]

311 **3.5 The pattern of N₂O emissions**

312 Offline data from laboratory studies and the ranges of the operational variables were analysed in 313 order to investigate significant changes that contribute to high accumulation of dissolved N_2O 314 concentration and high N_2O emissions.

315 Figure 6 (a) shows the daily average dissolved N_2O concentration (coloured points) during 316 aerobic phase versus conductivity at the end of aerobic phase and the effluent NH₄-N 317 concentration. Conductivity is significantly related and can be linked with the NH₄-N 318 concentration in the reactor (spearman correlation coefficient equal to 0.97). High average 319 aerobic dissolved N2O concentration (>1.5 mg/L) was mainly observed with NH4-N 320 concentrations lower than 150 mg/L and higher than 300 mg/L in the effluent of the SBR. 321 Additionally, the spearman correlation coefficient between dissolved N_2O and average aerobic 322 conductivity decrease rate (µS/cm/min) was equal to -0.7 and N2O concentration peaks were observed for conductivity decrease rate $> 1.8 \mu$ S/cm/min. The latter indicates that higher 323 324 emissions occur under high ammonia removal efficiency that can be linked with higher ammonia 325 oxidation rates (AOR) (i.e. due to pH values observed ~ 8) triggering the NH₂OH oxidation 326 pathway or higher than average NO_2N accumulation (triggering nitrifier denitrification 327 pathway). Domingo-Félez et al., (2014) found that N_2O production rates were positively 328 correlated with the extant nitrification rate in a single-stage nitritation/Anammox reactor. 329 Similarly, Law et al. (2011) identified a linear relationship between AOR and N₂O emissions in a 330 partial nitritation SBR reactor treating the reject water from anaerobic digestion. Law et al. (2011) 331 suggested that is attributed to higher accumulation of the ammonium oxidation intermediates 332 (hydroxylamine (NH₂OH) and nitrosyl radical (NOH)) leading to faster N₂O formation or to the 333 increased use of electrons reducing nitrite to nitric oxide (nitrifier denitrification pathway) under 334 low DO concentrations. High nitrite accumulation has been also linked with elevated N_2O

Journal Pre-proo

335 emissions and the nitrifier denitrification pathway, especially under low DO concentrations (Tallec et al., 2006; Kampschreur et al., 2008; Desloover et al., 2011; Peng et al., 2015; Massara 336 337 et al., 2017; Law et al., 2012). For instance, Peng et al. (2017) and Kampschreur et al. (2009), in a 338 nitritation-denitritation SBR and a full-scale single stage nitritation-Anammox reactor 339 respectively, identified linear relationship between nitrite accumulation and N_2O emissions at 340 DO levels below 1.5 mg/L. Similarly, Tallec et al (2006) in a nitrifying activated sludge observed 341 eightfold increase of N_2O emissions with the addition of nitrite pulses (10 mg/L) at DO equal to 1 mg/L. Therefore, both hydroxylamine oxidation and the nitrifier denitrification are possible 342

343

during aeration in the investigated SBR.

The average dissolved N₂O concentration during the aerobic phase of different cycles varied 344 345 significantly in relation to the average DO concentration. Figure 6 (b), shows that the dissolved 346 N₂O concentration peaks coincided with average DO concentrations less than 0.9 to 1 mg/L. The spearman correlation coefficient between dissolved N₂O and DO concentrations was equal to -347 348 0.7. The coloured points in the Figure, represent the ORP at the end of the aerobic phase; ORP is higher than 40 mV in the majority of the cycles with average aerobic dissolved N_2O 349 concentration less than 1 mg/L. Only cycles without dissolved N₂O accumulation from the 350 351 previous anoxic phase are shown in the graph. Stenström et al. (2014) showed decreasing DO 352 concentrations lower than 1-1.5 mg/L are linked with higher nitrite accumulation and are 353 positively correlated with N₂O emissions during nitrification in a full-scale predenitrification-354 nitrification SBR treating anaerobic supernatant. Similarly, Pijuan et al., (2014) reported an 355 increase of N_2O emissions in a nitritation reactor with the reduction of DO from 4 to <1 mg/L. 356 During the monitoring period, blowers operated at maximum flow-rate. Therefore, the presence 357 of residual biodegradable COD concentration in the aerobic, is expected to decrease DO concentration. Similarly, higher influent NH_4^+ loads or higher ammonia oxidation rates (that can 358

also result in increased NO_2^- accumulation) can impact the DO concentration in the system. The dissolved N₂O concentration can be affected by a combination of variables; therefore, it cannot be deduced that the decreased DO is the sole contributing factor triggering the increased N₂O generation observed.

363

[Figure 6]

364 **3.6** Impact of accumulated N₂O in the end of anoxic and anaerobic phase

365 Several parameters have been reported to affect the N₂O accumulation under anoxic conditions, such as the inhibition of the nitrous oxide reductase (Nos) by free nitrous acid (FNA) or high 366 367 accumulation of NO_2^{-} , the electron competition between electro acceptors and the type of carbon source (Itokawa et al., 2001; Pan et al., 2013; Zhou et al., 2008; Zhu and Chen, 2011). 368 369 Additionally, low values of COD/N can result in incomplete denitritation and therefore, N₂O 370 accumulation via the heterotrophic denitrification pathway during the anoxic phase of the SBR. Accumulated N₂O in the end of the anoxic phase is stripped in the subsequent cycle, increasing 371 372 the N_2O emissions. Caranto et al. (2016) have recently showed that N_2O can be the main product of anaerobic NH₂OH oxidation catalysed by the cytochrome P460 in N. europaea. The latter can 373 374 be an evidence of the biological N₂O generation under limited DO and high NH3 concentrations, 375 both conditions occurring in the target system in the during the transition from aerobic to anoxic 376 phases when N₂O accumulation rapidly increases.

In this study, the average soluble COD concentration in the fermentation liquid was equal to 13082 mg COD/L over the monitoring period (Table 1). Overall, in >27% of the examined cycles the N_2O was completely consumed by the end of the anoxic phase. Zhu and Chen, (2011), showed that the use of sludge alkaline fermentation as carbon source in an anaerobic-aerobic system treating high-strength stream, can reduce the N_2O production by up to 68.7% compared to

382 alternative carbon sources (i.e. acetic acid). On the other hand, Li et al., (2013a) in a process utilizing PHA as internal carbon source, observed higher N₂O production and reduction rates at 383 384 higher influent COD concentrations linked with higher anaerobic PHA synthesis (ranging from 100 to 500 mg/L). The higher N₂O production rates were attributed to the accumulated NO_2^{-1} 385 386 inhibiting the N₂O reduction.

387 The dissolved N_2O concentration in the anoxic phase exceeded the calibration limit of the sensors; only cycles in which "nitrite knee" was observed and N2O reduced to values lower than 388 389 2.6 mg/L could be investigated. Therefore, the effect on NO_2^- in anoxic N₂O generation could not 390 be studied. However, studies have shown that elevated NO₂ concentrations during denitrification 391 can reduce the denitrification rate and increase the N₂O accumulation (Schulthess et al., 1995). 392 The electron competition between nitrite reductase NIR, nitric oxide reductase (NOR) and nitrous 393 oxide reductace (NOS) is intensified under high NO_2^- concentrations; NOS is less competitive 394 under limitation of electron donor and this will result in N₂O accumulation (Pan et al., 2013; Ren 395 et al., 2019).

Based on the profiles shown in Figure 5, N_2O was always consumed after the depletion of NO_2^{-1} 396 397 during denitritation; specifically, dissolved N₂O concentration decreased after the "nitrite knee". 398 Gabarró et al. (2014), studied a partial-nitritation reactor treating landfill leachate, and operated 399 under alternating aerobic/anoxic conditions to allow heterotrophic denitritation. The authors demonstrated that significant N₂O accumulation was observed during anoxic periods. NO₂⁻ 400 401 denitrification rate was higher under both biodegradable COD limiting conditions and after 402 acetate addition compared to N₂O reduction; N₂O reduction rate was maximum after NO₂⁻ 403 removal (similar to what was observed in this study). In denitrifying phosphorus removal 404 processes, Li et al. (2013) showed that the N₂O accumulation can be higher compared to 405 conventional denitrification; the authors suggested that in the electron competition between

Journal Pre-proo

406 denitrifying enzymes and PHA, N₂O reductase is less competitive. On the other hand, Ribera-407 Guardia et al. (2016) investigated the electron competition during denitrification (PHA as the sole 408 carbon source) of enriched dPAO and dGAO biomass and found that higher N₂O accumulation 409 in the latter culture. Additionally, the last step of denitrification was inhibited in dGAO cultures (410 N_2O accumulation up to ~84% of the N-reduced), under high levels of NO_2^- (~ 15 mgN/gVSS) 411 whereas N₂O consumption in dPAO biomass was not affected. Wang et al., (2015) demonstrated 412 that during denitrifying phosphorus removal, mitigation of NO2⁻ accumulation is possible via continuous dosage of phosphate and nitrate. Wang et al., (2011), showed that optimisation of the 413

- 414 synthesis of PHA during the anaerobic phase can mitigate the N₂O production during the anoxic
 415 phase leading to complete denitrification.
- 416 In the system, N_2O emissions and dissolved N_2O concentration at the aerobic phase is strongly 417 related with incomplete denitritation in the previous cycle. In ~26% of the cycles with incomplete 418 denitritation, the N₂O concentration did not decrease below $\sim 2 \text{ mg/L}$ in the anaerobic phase and therefore the stripping of accumulated N_2O in the subsequent aerobic phase was substantial. 419 420 Figure 7 (a) shows representative profiles of the dissolved N_2O concentration and the N_2O 421 emissions based on different initial concentrations of N_2O in the beginning of the aerobic phase. 422 The profiles of the ORP, DO and pH are comparable in the preseted cycles (Figure 7 (b)). In 423 cycle B ~0.56 kgN of N₂O were emitted during the aerobic phase, wheareas in cycle A N₂O emissions are equal to 0.33 kgN (given the duration of these cycles is not equal only 220 min 424 425 were considered). The initial dissolved N_2O concentration in cycles A and B is equal to 0.27 and 426 >2.6 mg/L respectively. The N₂O emissions increased significantly due to the accumulated N₂O at the beginning of the previous anoxic phase that was stripped at the beginning of aeration. 427
- 428 Overall, in ~72% of the cycles, the dissolved N₂O concentration at the beginning of the anaerobic
- 429 phase was higher than 0.3 mg/L. In cycles with dissolved N_2O concentration higher than 0.3

Journal Pre-proof

430 mg/L at the beginning of the anaerobic phase, the change in dissolved N_2O concentration during the anaerobic phase was highly correlated with the ORP at the beginning of the anaerobic phase. 431 432 Additionally, the spearman correlation coefficient between the magnitude of the ORP reduction 433 and magnitude of the dissolved N_2O reduction was equal to 0.7. Figure 8 shows the boxplots of dissolved N₂O reduction in relation to initial anaerobic ORP and ORP change for two cases: i) 434 435 negligible dissolved N₂O change mainly due to influent dilution or anaerobic dissolved N2O concentration > 2.6 mg/L, and ii) occasions with N₂O reduction during the anaerobic phase. In 436 Figure 8 (a) only occassions with ORP decrease higher than -50 mV are shown. The presence of 437

nitrites in the bulk liquid during the (anaerobic) phase affected the ORP. NO₂-N depletion in the
bulk liquid resulted in a sharp "nitrite knee" in the ORP profile (similar to the one observed
during the anoxic phase. Therefore, higher ORP change was expected in cycles with NO₂-N
depletion and N₂O consumption during the anaerobic phase.

442

443

[Figure 7]

Anaerobic phase term, is used to describe the first operational phase of the SBR (Figure 1) within each cycle and might not represent the actual conditions in the reactor. For instance, $ORP \sim -80$ mV in the anaerobic phase of the SBR indicates anoxic conditions, due to residual NO_2 N concentration from the previous anoxic phase of the reactor.

448

[Figure 8]

449 **3.7** Prediction and control of N₂O accumulation in the anoxic and anaerobic phases

450 As discussed in section 3.6, the behaviour of ORP was significantly related with the behaviour of 451 NO_2^- and consequentially of the dissolved N_2O concentration during the anaerobic phase. 452 Therefore, in the ANSVM model, features related with the ORP profile were mainly used (Table 453 2). Similarly, there was a strong link with the ORP behaviour and the nitrite "knee" with the N_2O 454 accumulation during the anoxic phase. The features considered in ANOXSVM model are shown 455 in Table 2.

456

[Table 2]

The classification matrices for train and test datasets of the ANSVM and ANOXSVM models are presented in Table 3. The average classification accuracy for the ANOXSVM model, was equal to 99% and 97% for the test and validation datasets. Similar results were obtained for the anaerobic phase with 95% and 98% accuracy in the train and test datasets respectively.

Jaramillo et al. (2018) developed an SVM classifier to estimate online the end of partial 461 nitrification in a laboratory aerobic-anoxic SBR based on features extracted from pH and DO 462 463 sensors over time-windows, resulting in 7.52% reduction in the operational time. In this study, the 464 main focus was to estimate offline the behaviour of N₂O emissions based on historical batch data. 465 The results from this study indicate that ORP and pH sensor data can be used to detect the consumption of N₂O during the nitritation/nitrification in SBR reactors. The results show that 466 knowledge-based feature-extraction and SVM classification could help in explaining the 467 behaviour of the system and potentially optimise the control to consider the consumption of 468 469 accumulated N_2O (i.e. in this system the denitritation can be stopped after the local maximum of 470 the ORP rate after the nitrite "knee" in all the cycles investigated.)

471

[Table 3]

472 Figures 9 (a) and (b) illustrate the predicted and measured N₂O concentration at the end of the
473 anaerobic phase (ANSVR model). The SVR parameters were optimised based on the root mean
474 square error using the train dataset. RMSE of the SVR model was equal to 0.11 and 0.1 mg N₂O475 N/L for the train and test datasets respectively (R-squared equal to 0.85 and 0.75 respectively).

- 476 As shown in Figure 9 (b) the simulation results follow the behaviour of the actual dissolved N_2O 477 concentrations observed. One of the major factors affecting the performance is the limited 478 number of data points, but the prediction is still accurate.
- 479

[Figure 9]

480 **3.8** Prediction of the N₂O concentration in aerobic phase

481 The input features are shown in Table 4 and were selected based on the identified influential 482 variables. The N_2O predicted values of the ANSVR model were used (anaerP). The procedure 483 followed for the selection of model parameters was similar to the respective one followed for the 484 anaerobic phase. Additionally, ANSVR test dataset cycles, were identified and used in AERSVR 485 test dataset A. The model was also applied in anaerB cycles (test dataset B).

486 [Table 4]

Figure 10 (a), shows the predicted and measured average aerobic N_2O concentration for the trained and test datasets. RMSE of the SVR model was equal to 0.06 and 0.11 mg N_2O -N /L for the train dataset and test dataset A respectively, whereas the R-squared was equal to 0.94 and 0.82 (Figure 10 (a) and (b)).

491

[Figure 10]

The RMSE of the predicted values for the test dataset B, was equal to 0.29 mg N₂O-N/L and the R-squared was equal to 0.72 (Figure 10 (a)). The AERSVR model underpredicted the average dissolved N₂O concentration of test B dataset. This is expected given that in test B dataset cycles, the initial aerobic N₂O accumulation exceeds the sensor calibration limit. Therefore, on many occasions the initial aerobic N2O accumulation was also underestimated (section 2.2.1 - anaerB cycles). An example is shown if Figure 11. In cycle A, the average dissolved N₂O concentration 498 (calculated as discussed in section 2.2.1 for anaerB cycles) is equal to 1.33 mg/L. The AERSVR 499 model predicted 0.87 mg/L underestimating the actual concentration (considering initial 500 accumulation equal to 0.6 mg/L). In cycle B, the AERSVR model predicted N₂O concentration 501 equal to 0.61 mg/L (considering initial accumulation equal to 0.6); the observed average 502 dissolved N₂O concentration (after the local minimum), was equal to 0.6 mg/L.

503 [Figure 11]

The results show that under the investigated operational conditions, the framework shown in Figure 2Error! Reference source not found. can provide a good estimation of the real dissolved N₂O behaviour and concentration observed during the different phases of SBR operation. Instabilities in the performance of machine learning models due to changes in the operational conditions in wastewater bioreactors have been reported in the literature (Shi and Xu, 2018). Therefore, long-term datasets and investigation of different patterns and dependencies should be investigated before model construction.

511 **3.9 Mitigation strategy**

512 During aerobic phases, elevated average dissolved N₂O concentration was linked with DO less 513 than 1 mg/L and increased conductivity decrease rates (conductivity values represent NH₄-N 514 concentration values in the reactor). Therefore, cycles with increased conductivity decrease rate 515 indicate higher NH₄-N removal efficiency and NO₂N accumulation. Dissolved N₂O 516 concentrations lower than 0.6 mg/L were identified in cycles with average DO concentration 517 equal to ~1.36 mg/L, and conductivity decrease rate > 1.8 μ S/cm/min. Increasing the reactor DO 518 concentration to values higher than 1.3 mg/L can result in decreased aerobic N₂O generation 519 (Law et al., 2012). However, with the current anaerobic supernatant feeding strategy, blowers 520 operate at maximum flowrate, so it is not possible to increase the aeration in the system.

521 On the other hand, the implementation of a step-feeding strategy could foster the reduction of N₂O emissions thanks to the lower NH₄-N and free ammonia (FA) concentration at the beginning 522 523 of the cycle, which has been recognized as a triggering factor for N₂O production (Desloover et 524 al., 2012). Conductivity at the end of the cycle can act as surrogate to estimate the effluent NH₄-N 525 concentration of the reactor and optimize the anaerobic supernatant feeding load. Consequently, 526 the aerobic initial NH₄-N concentration could be controlled to avoid either FA accumulation or 527 high AOR with subsequent N₂O generation.

528 Additionally, frequent alternation of aerobic/anoxic phases can be introduced in order to avoid 529 high nitrite accumulation. The impact of nitrite concentration on N₂O production can be also minimized by ensuring adequate DO levels within the reactor to inhibit the nitrifiers 530 531 denitrification pathway (Blum et al., 2018; Law et al., 2013). Rodriguez-Caballero et al. (2015) 532 reported that in a full-scale SBR treating municipal wastewater, intermittent aeration (alternation between 20–30 min oxic and anoxic) led to a minimization of N₂O compared to long oxic periods 533 534 that enhanced N₂O emission. The authors related this behaviour to the presence of shorter 535 aeration times with subsequently lower nitrite accumulation and N₂O production.

536 In addition, Su et al. (2019) reported that slightly acidic or neutral pH in nitritation reactors (at 537 values that do not inhibit microbial activity) can decrease N₂O generation by up to seven times. Based on the pH profiles observed in this study, regulation of aerobic (alkalinity consumption) 538 539 phase duration can be also considered to control the pH at lower levels.

540 The developed models can be used to estimate rapidly and precisely the hard-to-measure N_2O 541 concentrations during aeration and detect N₂O accumulation in non-aerated phases. Additionally, 542 it can alert operators about cycles with anoxic and anaerobic N₂O accumulation and elevated 543 aerobic N₂O concentrations, that require modifications to the system operation. The ANOXSVM

Journal Pre-proo

model can predict if N_2O is consumed in anoxic phases or if anoxic duration should be extended. Thus, additional provision of fermentation liquid can be performed to promote N_2O consumption through denitritation, when after 70-90 minutes the anoxic SVM model still indicates incomplete denitritation.

548 This study provides evidence on the relationship of DO, ORP and conductivity and pH with the 549 dissolved N₂O concentration (in terms of correlation coefficients, behaviour and thresholds that indicate specific ranges of N₂O accumulation). These findings together with the models 550 developed in this study, can be the basis for the development of intelligent control algorithms to 551 552 integrate emissions control in sidestream SBR reactors performing nitritation/partial nitritation or other systems similar to S.C.E.N.A. Moreover, features based on ORP, pH, DO and conductivity 553 554 measurements in wastewater SBR processes, that can be used to predict dissolved N2O 555 concentrations have been identified. The developed framework can be also tested in continuous 556 processes for the data-driven prediction of N₂O emissions.

557 Conclusions

558 Knowledge discovery and data-mining techniques were employed to extract useful information 559 about the dynamic behaviour of N_2O , and to predict the behaviour of dissolved N_2O concentration 560 in a full-scale SBR reactor treating the anaerobic supernatant. The main conclusions are 561 summarized as follows:

- The N₂O emissions in SCENA process varies from 1.3% to 19% of NH₄-N load,
 therefore they can contribute considerably to the operational carbon footprint of the
 process (~90% on average).
- Average aerobic dissolved N₂O concentration could significantly under similar influent
 loads, DO, pH and removal efficiencies. Extracting information from the dynamic in-

567

568

cycle behaviour of the variables monitored in the system is a significant step towards understanding N₂O behaviour.

- Aerobic dissolved N₂O concentration peaks (>1 mg/L), were observed in cycles with average DO concentrations less than 0.9-1 mg/L and ORP concentration at the end of the aerobic phase less than 40 mV. Conductivity was correlated with the reactor NH₄-N concentration (0.97). N₂O peaks were also observed in cycles with elevated decrease of conductivity during aeration. Step-feeding, control of initial NH₄-N concentrations and control of pH via the regulation of aerobic phase duration can mitigate the N₂O peaks
- The accumulation of N₂O at the end of the SBR anoxic phase was stripped in the subsequent aerobic phase and had a significant impact on the amount of N₂O emitted.
 The accumulated N₂O was consumed rapidly after nitrite 'knee' that was linked with the nitrite depletion. The ANOXSVM model can be used to detect if anoxic duration should be extended or additional fermentation liquid provided to enhance N₂O consumption in anoxic phases.
- This study shows that low-cost sensors, conventionally used to monitor SBR systems (i.e. pH, DO, ORP), have good capabilities to predict the dissolved N₂O behaviour and concentrations when couple with knowledge discovery techniques. The AERSVR model, showed reliable estimations of the aerobic N₂O concentration and can provide guidance to WWTPs operators, on whether N₂O levels are acceptable or mitigation actions are required.

588 Acknowledgements

26

- 589 This research was supported by the Horizon 2020 research and innovation program SMART-
- ⁵⁹⁰ Plant (grant agreement No 690323).

ounderergio

591 **References**

- 592 Blum, J.-M., Jensen, M.M., Smets, B.F., 2018. Nitrous oxide production in intermittently aerated
- 593 Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia
- 594 removal rate. Chem. Eng. J. 335, 458–466. https://doi.org/10.1016/j.cej.2017.10.146
- 595 Byvatov, E., Schneider, G., 2003. Support vector machine applications in bioinformatics. Appl.
- 596 Bioinformatics 2, 67–77.
- 597 Caranto, J.D., Vilbert, A.C., Lancaster, K.M., 2016. Nitrosomonas europaea cytochrome P460 is
- 598 a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. 113, 14704–
- 599 14709. https://doi.org/10.1073/pnas.1611051113
- 600 Corominas, Ll., Garrido-Baserba, M., Villez, K., Olsson, G., Cortés, U., Poch, M., 2018a.
- 601 Transforming data into knowledge for improved wastewater treatment operation: A critical
- 602 review of techniques. Environ. Model. Softw., Special Issue on Environmental Data Science.
- 603 Applications to Air quality and Water cycle 106, 89–103. 604 https://doi.org/10.1016/j.envsoft.2017.11.023
- 605 Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297.
 606 https://doi.org/10.1007/BF00994018
- 607 Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., Vlaeminck,
- 608 S.E., 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting
- 609 N2O emissions. Water Res. 45, 2811–2821. https://doi.org/10.1016/j.watres.2011.02.028
- 610 Desloover, J., Vlaeminck, S.E., Clauwaert, P., Verstraete, W., Boon, N., 2012. Strategies to
- 611 mitigate N2O emissions from biological nitrogen removal systems. Curr. Opin. Biotechnol.,
- 612 Energy biotechnology Environmental biotechnology 23, 474–482.
- 613 https://doi.org/10.1016/j.copbio.2011.12.030

- 614 Domingo-Félez, C., Mutlu, A.G., Jensen, M.M., Smets, B.F., 2014. Aeration Strategies To
- 615 Mitigate Nitrous Oxide Emissions from Single-Stage Nitritation/Anammox Reactors. Environ.
- 616 Sci. Technol. 48, 8679–8687. https://doi.org/10.1021/es501819n
- 617 Eskicioglu, C., Galvagno, G., Cimon, C., 2018. Approaches and processes for ammonia removal
- from side-streams of municipal effluent treatment plants. Bioresour. Technol. 268, 797-810.
- 619 https://doi.org/10.1016/j.biortech.2018.07.020
- 620 Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A density-based algorithm for discovering
- 621 clusters in large spatial databases with noise., in: Kdd. pp. 226–231.
- 622 Fang, F., Ni, B., Li, W., Sheng, G., Yu, H., 2011. A simulation-based integrated approach to
- 623 optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chem.
- 624 Eng. J. 174, 635–643. https://doi.org/10.1016/j.cej.2011.09.079
- Frison, N., Katsou, E., Malamis, S., Oehmen, A., Fatone, F., 2015. Development of a novel
 process integrating the treatment of sludge reject water and the production of
 polyhydroxyalkanoates (PHAs). Environ. Sci. Technol. 49, 10877–10885.
- 628 Gabarró, J., González-Cárcamo, P., Ruscalleda, M., Ganigué, R., Gich, F., Balaguer, M.D.,
- 629 Colprim, J., 2014. Anoxic phases are the main N2O contributor in partial nitritation reactors
- 630 treating high nitrogen loads with alternate aeration. Bioresour. Technol. 163, 92–99.
- 631 https://doi.org/10.1016/j.biortech.2014.04.019
- Haimi, H., Mulas, M., Corona, F., Vahala, R., 2013. Data-derived soft-sensors for biological
 wastewater treatment plants: An overview. Environ. Model. Softw. 47, 88–107.
 https://doi.org/10.1016/j.envsoft.2013.05.009
- 635 IPCC, 2013. The physical science basis. Contribution of working group I to the fifth assessment
- report of the intergovernmental panel on climate change. USA: Cambridge University Press.

- Itokawa, H., Hanaki, K., Matsuo, T., 2001. Nitrous oxide production in high-loading biological
 nitrogen removal process under low cod/n ratio condition. Water Res. 35, 657–664.
- 639 https://doi.org/10.1016/S0043-1354(00)00309-2
- 640 Janus, H.M., van der Roest, H.F., 1997. Don't reject the idea of treating reject water. Water Sci.
- 641 Technol. 35, 27–34. https://doi.org/10.2166/wst.1997.0351
- Jaramillo, F., Orchard, M., Muñoz, C., Antileo, C., Sáez, D., Espinoza, P., 2018. On-line
 estimation of the aerobic phase length for partial nitrification processes in SBR based on features
 extraction and SVM classification. Chem. Eng. J. 331, 114–123.
- 644 extraction and SVM classification. Chem. Eng. J. 331, 114–123.
 645 https://doi.org/10.1016/j.cej.2017.07.185
- 646 Kampschreur, M.J., Poldermans, R., Kleerebezem, R., Star, W.R.L. van der, Haarhuis, R., Abma,
- 647 W.R., Jetten, M.S.M., Loosdrecht, M.C.M. van, 2009. Emission of nitrous oxide and nitric oxide
- 648 from a full-scale single-stage nitritation-anammox reactor. Water Sci. Technol. 60, 3211–3217.
- 649 https://doi.org/10.2166/wst.2009.608
- 650 Kampschreur, M.J., van der Star, W.R.L., Wielders, H.A., Mulder, J.W., Jetten, M.S.M., van
- 651 Loosdrecht, M.C.M., 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale
- 652 reject water treatment. Water Res. 42, 812–826. https://doi.org/10.1016/j.watres.2007.08.022
- 653 Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. kernlab An S4 Package for Kernel
- 654 Methods in R. J. Stat. Softw. 11, 1–20.
- 655 Lackner, S., Gilbert, E.M., Vlaeminck, S.E., Joss, A., Horn, H., van Loosdrecht, M.C., 2014.
- 656 Full-scale partial nitritation/anammox experiences-an application survey. Water Res. 55, 292-
- 657 303.

- 658 Law, Y., Lant, P., Yuan, Z., 2013. The Confounding Effect of Nitrite on N2O Production by an
- 659 Enriched Ammonia-Oxidizing Culture. Environ. Sci. Technol. 47, 7186-7194.
- 660 https://doi.org/10.1021/es4009689
- Law, Y., Lant, P., Yuan, Z., 2011. The effect of pH on N 2 O production under aerobic conditions
- in a partial nitritation system. Water Res. 45, 5934–5944.
- 663 Law, Y., Ye, L., Pan, Y., Yuan, Z., 2012. Nitrous oxide emissions from wastewater treatment
- 664 processes. Philos. Trans. R. Soc. B Biol. Sci. 367, 1265–1277.
 665 https://doi.org/10.1098/rstb.2011.0317
- Li, C., Wang, T., Zheng, N., Zhang, J., Ngo, H.H., Guo, W., Liang, S., 2013a. Influence of
- organic shock loads on the production of N2O in denitrifying phosphorus removal process.
- 668 Bioresour. Technol., Challenges in Environmental Science and Engineering (CESE-2012) 141,
- 669 160–166. https://doi.org/10.1016/j.biortech.2013.03.117
- 670 Li, C., Zhang, J., Liang, S., Ngo, H.H., Guo, W., Zhang, Y., Zou, Y., 2013b. Nitrous oxide
- 671 generation in denitrifying phosphorus removal process: main causes and control measures.
- 672 Environ. Sci. Pollut. Res. 20, 5353–5360. https://doi.org/10.1007/s11356-013-1530-3
- 673 Liu, Y.-J., Gu, J., Liu, Y., 2018. Energy self-sufficient biological municipal wastewater
- reclamation: Present status, challenges and solutions forward. Bioresour. Technol. 269, 513–519.
- 675 https://doi.org/10.1016/j.biortech.2018.08.104
- 676 Longo, S., d'Antoni, B.M., Bongards, M., Chaparro, A., Cronrath, A., Fatone, F., Lema, J.M.,
- 677 Mauricio-Iglesias, M., Soares, A., Hospido, A., 2016. Monitoring and diagnosis of energy
- 678 consumption in wastewater treatment plants. A state of the art and proposals for improvement.
- 679 Appl. Energy 179, 1251–1268. https://doi.org/10.1016/j.apenergy.2016.07.043

- 680 Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Van Huffel, S., Suykens, J.A.K., 2010. A
- tutorial on support vector machine-based methods for classification problems in chemometrics.
- 682 Anal. Chim. Acta 665, 129–145. https://doi.org/10.1016/j.aca.2010.03.030
- 683 Massara, T.M., Malamis, S., Guisasola, A., Baeza, J.A., Noutsopoulos, C., Katsou, E., 2017. A
- 684 review on nitrous oxide (N 2 O) emissions during biological nutrient removal from municipal
- 685 wastewater and sludge reject water. Sci. Total Environ. 596, 106–123.
- Newhart, K.B., Holloway, R.W., Hering, A.S., Cath, T.Y., 2019. Data-driven performance
 analyses of wastewater treatment plants: A review. Water Res. 157, 498–513.
 https://doi.org/10.1016/j.watres.2019.03.030
- 689 Pan, Y., Ni, B.-J., Bond, P.L., Ye, L., Yuan, Z., 2013. Electron competition among nitrogen
- 690 oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res.
 691 47, 3273–3281. https://doi.org/10.1016/j.watres.2013.02.054
- 692 Peng, L., Carvajal-Arroyo, J.M., Seuntjens, D., Prat, D., Colica, G., Pintucci, C., Vlaeminck, S.E.,
- 2017. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during
 treatment of co-digested pig slurry centrate. Water Res. 127, 1–10.
 https://doi.org/10.1016/j.watres.2017.09.049
- Peng, L., Ni, B.-J., Ye, L., Yuan, Z., 2015. The combined effect of dissolved oxygen and nitrite
 on N 2 O production by ammonia oxidizing bacteria in an enriched nitrifying sludge. Water Res.
 73, 29–36.
- 699 Pijuan, M., Torà, J., Rodríguez-Caballero, A., César, E., Carrera, J., Pérez, J., 2014. Effect of
- 700 process parameters and operational mode on nitrous oxide emissions from a nitritation reactor
- treating reject wastewater. Water Res. 49, 23–33. https://doi.org/10.1016/j.watres.2013.11.009

- 702Raghavendra, N.S., Deka, P.C., 2014. Support vector machine applications in the field of703hydrology:Areview.Appl.SoftComput.19,372–386.
- 704 https://doi.org/10.1016/j.asoc.2014.02.002
- 705 Ren, Y., Ngo, H.H., Guo, W., Ni, B.-J., Liu, Y., 2019. Linking the nitrous oxide production and
- 706 mitigation with the microbial community in wastewater treatment: A review. Bioresour. Technol.
- 707 Rep. 7, 100191. https://doi.org/10.1016/j.biteb.2019.100191
- Ribera-Guardia, A., Marques, R., Arangio, C., Carvalheira, M., Oehmen, A., Pijuan, M., 2016.
 Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying
 polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms.
 Bioresour. Technol. 219, 106–113. https://doi.org/10.1016/j.biortech.2016.07.092
- 712 Rodriguez-Caballero, A., Aymerich, I., Marques, R., Poch, M., Pijuan, M., 2015. Minimizing
- 713 N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor.
- 714 Water Res. 71, 1–10. https://doi.org/10.1016/j.watres.2014.12.032
- 715 Rodriguez-Garcia, G., Frison, N., Vázquez-Padín, J.R., Hospido, A., Garrido, J.M., Fatone, F., 716 Bolzonella, D., Moreira, M.T., Feijoo, G., 2014. Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a 717 718 wastewater treatment plant. Sci. Total Environ. 490, 871-879. 719 https://doi.org/10.1016/j.scitotenv.2014.05.077
- Sarni, W., White, C., Webb, R., Cross, K., Glotzbach, R., 2019. Industry leaders chart the
 transformation journey. International Water Association (IWA) and Xylem White Paper.
- 722 Schaubroeck, T., De Clippeleir, H., Weissenbacher, N., Dewulf, J., Boeckx, P., Vlaeminck, S.E.,
- 723 Wett, B., 2015. Environmental sustainability of an energy self-sufficient sewage treatment plant:

- 724 Improvements through DEMON and co-digestion. Water Res. 74, 166–179.
 725 https://doi.org/10.1016/j.watres.2015.02.013
- Schulthess, R. v., Kühni, M., Gujer, W., 1995. Release of nitric and nitrous oxides from
 denitrifying activated sludge. Water Res. 29, 215–226. https://doi.org/10.1016/00431354(94)E0108-I
- 729 Seshan, H., Goyal, M.K., Falk, M.W., Wuertz, S., 2014. Support vector regression model of
- 730 wastewater bioreactor performance using microbial community diversity indices: Effect of stress
- 731 and bioaugmentation. Water Res. 53, 282–296. https://doi.org/10.1016/j.watres.2014.01.015
- 732 Shi, S., Xu, G., 2018. Novel performance prediction model of a biofilm system treating domestic
- 733 wastewater based on stacked denoising auto-encoders deep learning network. Chem. Eng. J. 347,
- 734 280–290. https://doi.org/10.1016/j.cej.2018.04.087
- Stenström, F., Tjus, K., Jansen, J. la C., 2014. Oxygen-induced dynamics of nitrous oxide in
 water and off-gas during the treatment of digester supernatant. Water Sci. Technol. 69, 84–91.
- 737 https://doi.org/10.2166/wst.2013.558
- 738 Su, Q., Domingo-Félez, C., Zhang, Z., Blum, J.-M., Jensen, M.M., Smets, B.F., 2019. The effect
- of pH on N2O production in intermittently-fed nitritation reactors. Water Res. 156, 223–231.
- 740 https://doi.org/10.1016/j.watres.2019.03.015
- Tallec, G., Garnier, J., Billen, G., Gousailles, M., 2006. Nitrous oxide emissions from secondary
 activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of
- 743 oxygenation level. Water Res. 40, 2972–2980. https://doi.org/10.1016/j.watres.2006.05.037
- van Loosdrecht, M.C.M., Salem, S., 2006. Biological treatment of sludge digester liquids. Water
- 745 Sci. Technol. J. Int. Assoc. Water Pollut. Res. 53, 11–20.

- 746 Vasilaki, V., Massara, T.M., Stanchev, P., Fatone, F., Katsou, E., 2019. A decade of nitrous oxide
- 747 (N2O) monitoring in full-scale wastewater treatment processes: A critical review. Water Res.
- 748 161, 392–412. https://doi.org/10.1016/j.watres.2019.04.022
- 749 Vasilaki, V., Volcke, E.I.P., Nandi, A.K., van Loosdrecht, M.C.M., Katsou, E., 2018. Relating
- 750 N2O emissions during biological nitrogen removal with operating conditions using multivariate
- statistical techniques. Water Res. 140, 387–402. https://doi.org/10.1016/j.watres.2018.04.052
- 752 Wan, X., Baeten, J.E., Volcke, E.I.P., 2019. Effect of operating conditions on N2O emissions
- 753 from one-stage partial nitritation-anammox reactors. Biochem. Eng. J. 143, 24–33.
- 754 https://doi.org/10.1016/j.bej.2018.12.004
- 755 Wang, Y., Geng, J., Ren, Z., He, W., Xing, M., Wu, M., Chen, S., 2011. Effect of anaerobic
- reaction time on denitrifying phosphorus removal and N2O production. Bioresour. Technol. 102,
 5674–5684. https://doi.org/10.1016/j.biortech.2011.02.080
- 758 Wang, Z., Meng, Y., Fan, T., Du, Y., Tang, J., Fan, S., 2015. Phosphorus removal and N2O
- 759 production in anaerobic/anoxic denitrifying phosphorus removal process: Long-term impact of
- 760 influent phosphorus concentration. Bioresour. Technol. 179, 585–594.
 761 https://doi.org/10.1016/j.biortech.2014.12.016
- 762 Zhou, X., Zhang, X., Zhang, Z., Liu, Y., 2018. Full nitration-denitration versus partial nitration-
- 763 denitration-anammox for treating high-strength ammonium-rich organic wastewater. Bioresour.
- 764 Technol. 261, 379–384. https://doi.org/10.1016/j.biortech.2018.04.049
- 765 Zhou, Y., Pijuan, M., Zeng, R.J., Yuan, Z., 2008. Free Nitrous Acid Inhibition on Nitrous Oxide
- 766 Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge. Environ. Sci.
- 767 Technol. 42, 8260–8265. https://doi.org/10.1021/es800650j

Journal Pre-proof

Zhu, X., Chen, Y., 2011. Reduction of N2O and NO Generation in Anaerobic–Aerobic (Low
Dissolved Oxygen) Biological Wastewater Treatment Process by Using Sludge Alkaline
Fermentation Liquid. Environ. Sci. Technol. 45, 2137–2143. https://doi.org/10.1021/es102900h

Journal Prevention

Parameter	unit	mean	Sd
NH ₄ -N	mg/L	992.5	90
PO ₄ -P	mg/L	30.8	6.9
pH		8.2	0.2
sCOD	mg/L	1111.7	562
Flow-rate	m^3/d	30 (8.4 per cycle)	2.2
Gas flow-rate	m^3/h	450 (170 - 520)	78
Dimensions	mxmxm	8 x 3.5 x 2.5	
NH_4-N	mg/L	214.7	80.93
NO ₂ -N	mg/L	3.23	9.7
NO ₃ -N	mg/L	0.28	0.34
PO ₄ -P	mg/L	6.78	2.22
pH		8.04	0.3
MLSS	g/L	5.05	0.87
HRT	d^{-1}	1.05	
SRT	d^{-1}	15	
pH		7.7	0.5
Т	°C	30.02	1.56
NH ₄ -N	mg/L	715	72.6
PO ₄ -P	mg/L	86	12
pН		5.6	0.6
Т	°C	36	5.1
sCOD	mg/L	13082	2228
ferm_Hac	mg/L	3250	546
ferm_HPr	mg/L	2281	588
ferm_Hbut	mg/L	1347	196
Flow-rate to SBR	m ³ /cycle	7.45 (~2.41 per cycle)	3.0
	Parameter NH4-N PO4-P pH sCOD Flow-rate Gas flow-rate Dimensions NH4-N NO2-N NO3-N PO4-P pH SRT pH T NH4-N PO4-P pH SRT pH T SRT pH T SCOD ferm_Hac ferm_HPr ferm_HPr ferm_HPt ferm_HPt ferm_Hbut Flow-rate to SBR	Parameter unit NH_4 -N mg/L PO_4 -P mg/L pH mg/L $sCOD$ mg/L $Flow$ -rate m^3/d Gas flow-rate m^3/d Gas flow-rate m^3/d $Dimensions$ mxmxm NH_4 -N mg/L NO_2 -N mg/L NO_2 -N mg/L PO_4 -P mg/L PO_4 -P mg/L PH d^{-1} SRT d^{-1} SRT d^{-1} PH T PH T PH T PO_4 -P mg/L PH T C C NH_4 -N mg/L PH T T C $SCOD$ mg/L pH mg/L $ferm_HPr$ mg/L $ferm_HPr$ mg/L $ferm_HPh$	Parameterunitmean NH_4 -N mg/L 992.5 PO_4 -P mg/L 30.8 pH 8.2 $sCOD$ mg/L 1111.7 Flow-rate m^3/d $30 (8.4 \text{ per cycle})$ Gas flow-rate m^3/h $450 (170 - 520)$ Dimensionsmxmxm $8 \times 3.5 \times 2.5$ NH_4 -N mg/L 214.7 NO_2 -N mg/L 3.23 NO_3 -N mg/L 0.28 PO_4 -P mg/L 6.78 pH 6.78 pH 6.78 pH 7.7 T C 30.02 d^{-1} NH_4 -N mg/L SRT d^{-1} 1.05 SRT f^{-1} 1.05 SRT f^{-1} pH 7.7 T $^{\circ}C$ 30.02 NH_4 -N mg/L Rf 36 pH 5.6 T $^{\circ}C$ 36 $sCOD$ mg/L 13082 $ferm_Hac$ mg/L 1347 $ferm_Hbut$ mg/L 1347 $Flow-rate to SBR$ $m^3/cycle$ $7.45 (-2.41 \text{ per cycle})$

Table 1: Influent and effluent concentrations of the SCENA sy	ystem
---	-------

Table 2: Features used in the classification algorithm to predict the accumulation of dissolved N_2O at the end of the anoxic and anaerobic phases

Anaerobic	Anoxic	Anaerobic regression
ORP phase initial	Last ORP value	ORP phase initial
First local maximum ORP first derivative	Mean pH	OKI enange
Local minimum of ORP first derivative after first local maximum ORP first derivative	Difference between first local maximum (after carbon dosage) and subsequent local minimum of the ORP first derivative	pH phase initial
Duration between first local maximum and subsequent local minimum of the ORP first derivative	Duration of carbon dosage	Time of ORP first derivative minimum/duration of phase
pH phase initial	Duration between first local maximum (after carbon dosage) and subsequent local minimum of the ORP first derivative	Difference between first local maximum and subsequent local minimum of the ORP first derivative
Time local minimum ORP first derivative/Phase duration	Last ORP first derivate	

Table 4: Features selected in the SVR model for the aerobic phase

Aerobic Features

JURNA

Average conductivity rate ORP end of aeration ORP increase during aeration Conductivity at the beginning of aeration Average DO pH at the beginning of aeration Conductivity increase (based on the conductivity at the end of the aerobic phase of the previous cycle) pH change during aeration Initial aerobicN₂O concentration (based on ANSVR predictions)

Phase	Dataset	Misclassified	Sensitivity	Specificity	Accuracy (%)	Kappa	Class
Anoxic phase	Train	anoxA: 1 anoxB: 0	1	0.99	99	0.97	anoxA: Final dissolved N ₂ O
cycle N	Test	anoxA: 1 anoxB: 0	1	0.98	98	0.92	concentration end of anoxic < 0.6 mg/L
							anoxB: Final dissolved N_2O concentration end of anoxic > 0.6 mg/L
Anaerobic phase	Train	anaerA:2 anaerB: 1	0.98	0.97	97	0.94	anaerA: N_2O end of anaerobic > 2.6 mg/L
cycle N+1	Test	anaerA: 1 anaerB: 0	1	0.97	98	0.95	anaerB: N_2O end of anaerobic < 2.6 mg/L

1 able 3: SVM classification results anoxic and anaerobic phases
--

Journal Prest

Figure 1: Schematic representation of a complete cycle in the S.C.E.N.A process and datasets

used in the analysis

Journal

Jonuly

Figure 11: An example of dissolved N2O profiles for cycles belonging to anaerB cycles (test dataset B). The red points represent the first point considered for the calculation of the average aerobic N₂O accumulation (as described in section 2.2.1). Data points in the beginning of aeration exceeding sensor calibration limits are not shown.

Jonuly

Journal Pre-proof

Figure 2: Methodological Framework followed in the study

Figure 3: (a) N_2O emissions and (b) aerobic phase conductivity decrease, during monitoring

campaign (gas analyser, March-April)

Figure 4: (a) Example of the effect of N_2O emissions in the operational carbon footprint for two cases, (b) aerobic profiles of conductivity, ORP and (c) DO for the two cases shown in (a)

Figure 5: Representative cycle profile for the (a) dissolved N₂O concentration, N₂O emissions, conductivity, DO, (b) ORP and pH, and (c) NH₄-N, NO₂-N and PO₄-P concentrations

Figure 6: (a) Daily average conductivity at the end of the aerobic phase versis effluent NH₄-N concentration (coloured points: average dissolved N₂O accumulated in the aerobic phase), (b) Aerobic average accumulated dissolved N₂O in respect to DO concentration; only cycles without initial N₂O accumulation from the previous anoxic cycle are shown (coloured points: ORP at the end of the aerobic phase)

Figure 7: (a) Representative profiles of dissolved N_2O concentration based on different initial concentrations of N_2O in the beginning of the aerobic phase and (b) ORP and DO profiles

Figure 8: Box-plots of the (a) initial anaerobic ORP and (b) the ORP change during the anaerobic phase for cycles with and without N_2O consumption (Class 0: no significant N_2O consumption or anaerobic N_2O concentration > 2.6 mg/L; Class 2: significant N_2O consumption)

N

Figure 9: (a) Predicted vs measured dissolved N₂O concentration in the end of the anaerobic phase (ANSVR) for the test and train datasets and (b) comparison of predicted and measured dissolved N₂O concentration for the test dataset

J

Highlights

- S.C.E.N.A N₂O emissions contribute up to 97.3% to the operational carbon footprint •
- Stripping of accumulated N₂O from the previous anoxic cycle increases emissions .
- Aerobic dissolved N₂O concentration is correlated with DO and conductivity •
- Conductivity can be used to control SBR NH_4^+ concentration and N_2O •
- N2O can be estimated as a latent parameter from other low-cost sensors •

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk