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Abstract 11 

Data Analytics is being deployed to predict the dissolved nitrous oxide (N2O) concentration in a 12 

full-scale sidestream sequence batch reactor (SBR) treating the anaerobic supernatant. On 13 

average, the N2O emissions are equal to 7.6% of the NH4-N load and can contribute up to 97 % to 14 

the operational carbon footprint of the studied nitritation-denitritation and via-nitrite enhanced 15 

biological phosphorus removal process (S.C.E.N.A). The analysis showed that average aerobic 16 

dissolved N2O concentration could significantly vary under similar influent loads, dissolved 17 

oxygen (DO), pH and removal efficiencies. A combination of density-based clustering, support 18 

vector machine (SVM), and support vector regression (SVR) models were deployed to estimate 19 

the dissolved N2O concentration and behaviour in the different phases of the SBR system. 20 

The results of the study reveal that the aerobic dissolved N2O concentration is correlated with the 21 

drop of average aerobic conductivity rate (spearman correlation coefficient equal to 0.7), the DO 22 

(spearman correlation coefficient equal to -0.7) and the changes of conductivity between 23 

sequential cycles. Additionally, operational conditions resulting in low aerobic N2O accumulation 24 

(<0.6 mg/L) were identified; step-feeding, control of initial NH4
+ concentrations and aeration 25 

duration can mitigate the N2O peaks observed in the system. The N2O emissions during aeration 26 

shows correlation with the stripping of accumulated N2O from the previous anoxic cycle. The 27 

analysis shows that N2O is always consumed after the depletion of NO2
- during denitritation (after 28 

the “nitrite knee”). Based on these findings SVM classifiers were constructed to predict whether 29 

dissolved N2O will be consumed during the anoxic and anaerobic phases and SVR models were 30 

trained to predict the N2O concentration at the end of the anaerobic phase and the average 31 

dissolved N2O concentration during aeration. The proposed approach accurately predicts the N2O 32 

emissions as a latent parameter from other low-cost sensors that are traditionally deployed in 33 

biological batch processes.   34 
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1. Introduction 35 

In recent years the sustainability and operational efficiency of wastewater treatment plants 36 

(WWTPs) have come to the fore (Liu et al., 2018). Several biological technologies such as 37 

partial-nitritation – anammox (anaerobic ammonium oxidation) have emerged, towards the 38 

efficient, low-cost treatment of high-strength municipal wastewater streams (Lackner et al., 2014; 39 

Zhou et al., 2018). The anaerobic supernatant is a by-product of dewatering of the anaerobic 40 

digestion effluent and represents less than 1-2% of the total influent flow in the WWTP. It 41 

contains 10–30% of the N load and 20–30% of the P load (Janus and van der Roest, 1997; van 42 

Loosdrecht and Salem, 2006). Sidestream treatment of the anaerobic supernatant can contribute to 43 

the reduction of energy consumption for N-removal, decrease of nitrogen loads in the secondary 44 

treatment, and the minimisation of risks related to exceeding effluent regulatory requirements of 45 

nitrogen concentrations in the water line of WWTPs (Eskicioglu et al., 2018). However, the 46 

performance and environmental evaluation of different sidestream technologies is still under 47 

investigation (Eskicioglu et al., 2018; Rodriguez-Garcia et al., 2014). 48 

SCENA (Short-Cut Enhanced Nutrient Abatement) is a new sidestream process, that combines 49 

the conversion of  NH4
+ to NO2

- under aerobic conditions (nitritation) with the subsequent 50 

reduction of NO2
- to nitrogen gas and enhanced biological phosphorus uptake by polyphosphate-51 

accumulating organisms (DPAOs) in a sequencing batch reactor (SBR) (Frison et al., 2015). 52 

External volatile fatty acids (VFAs), are produced via acidogenic fermentation of the primary and 53 

secondary sludge on-site and dosed into the SBR. In a recent study, Longo et al. (2016), 54 

quantified the environmental and cost benefits and impacts of the integration of the SCENA 55 

process in a full-scale WWTP. They reported major energy savings for aeration after the 56 

integration of sidestream SCENA process. The direct N2O emissions were equal to 1.42% of the 57 
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influent N-load. Short-term monitoring campaigns were implemented, while the effect of 58 

operational conditions on N2O generation was not investigated.   59 

N2O is a potent cause of global warming, its global warming potential is 265 - 298 times more 60 

than that of CO2 (IPCC, 2013). The emission of N2O in full-scale sidestream partial-61 

nitritation/partial-nitritation–anammox or nitrification-denitrification systems range from 0.17% 62 

to 5.1% of the influent N-load (average equal to ∼2.1% of the N-load is emitted (Vasilaki et al., 63 

2019) . Schaubroeck et al. (2015) showed that N2O emissions from a full-scale sidestream 64 

DEMON process in Austria were significantly higher than the direct N2O emissions from the 65 

mainstream treatment in a full-scale WWTP. On average, 0.256 g N2O were emitted compared to 66 

0.005 g emitted in the secondary treatment per m3 treated wastewater. The increased direct  N2O 67 

emissions can be mainly attributed to low DO concentrations, higher ammonia oxidation rates 68 

(AOR) and NO2
− build-up (Desloover et al., 2011; Kampschreur et al., 2008); conditions that also 69 

prevail in the SCENA process. The variability of EF reported in sidestream technologies can be 70 

partially attributed to both complex relationships between emitted N2O and operational conditions 71 

and different configurations (i.e. SBR, continuous systems), loads (i.e. NH4
+ concentrations), 72 

feeding strategies and operational control (i.e. DO set-points). Additionally, different interactions 73 

between operational variables trigger a different response of N2O generation. For instance, in a 74 

recent modelling study of a granular one-stage partial-nitritation-anammox reactor, Wan et al. 75 

(2019) showed that higher temperatures resulted in increased N2O emissions in the presence of 76 

COD (chemical oxygen demand) and in decreased N2O emissions in the absence of COD (due to 77 

increased anammox activity and reduction of NO2
- accumulation in higher temperature). 78 

Additionally, the long-term temporal variations of direct  N2O emissions were not adequately 79 

assessed in sidestream technologies; the majority of the monitoring campaigns in sidestream 80 

reactors lasted less than 5 days  (Vasilaki et al., 2019). 81 
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The digitalisation of water services and the data-driven knowledge discovery from wastewater 82 

treatment plant may increase the resilience of water utilities under climate change and other 83 

water-related challenges (Sarni et al., 2019). Recent studies have provided extensive overviews of 84 

the use of data-driven techniques in the wastewater sector for different applications including the 85 

development of soft-sensors, fault prediction and multi-objective optimisation of control of water 86 

utilities (Corominas et al., 2018a; Haimi et al., 2013; Newhart et al., 2019). Data-mining and 87 

extraction of the information hidden in the raw sensor signals can facilitate the identification of 88 

patterns and hidden structures and reveal significant information on the behaviour of N2O 89 

emissions in continuous wastewater treatment processes (Vasilaki et al., 2018). The SBR in the 90 

SCENA process is multiphase (i.e. anaerobic, aerobic, anoxic conditions) applying different 91 

operational variables (unsynchronised data), non-linear and subject to different disturbances, such 92 

as influent compositions and fermentation liquid characteristics. Moreover, SBR process data are 93 

based on a 3d-structure that consists of the number of i) cycles, ii) variables and iii) sampling 94 

points within each cycle. Therefore, the identification of process abnormalities and patterns can 95 

be complicated.  N2O emissions could be affected by both within-cycle and between-cycle batch 96 

dynamics. 97 

In this study, sensor and laboratory analyses data from a full-scale SCENA SBR were analysed to 98 

provide insights on the N2O emissions behaviour and generation. A structured approach was 99 

followed for knowledge discovery from the available dataset using a combination of abnormal 100 

events detection, classification and regression techniques. The objectives of the study were to i) 101 

investigate whether the sensors integrated in the system (i.e. conductivity, pH) can provide 102 

actionable information on the dynamics of N2O emissions, ii) detect hotspots for the 103 

accumulation and emission of N2O and iii) develop data-driven regression and classification 104 
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models to predict the dissolved N2O behaviour and concentration for the different phases 105 

(anaerobic, aerobic, anoxic) of the SBR.   106 

2. Materials and Methods 107 

2.1 Process description and data origin 108 

The Carbonera plant is designed to treat domestic wastewater of a population equivalent of 109 

40,000 (dry weather flow equal to 10,000 m3/d). After screening and degritting and primary 110 

sedimentation, the effluent from the primary clarifier is sent to a Schreiber reactor (single basin – 111 

working volume 4671 m3). Schreiber reactor effluent is pumped to two secondary clarifiers (2260 112 

m3 each) and subsequently to the tertiary treatment unit for disinfection and filtration before final 113 

discharge in the Melma River. 114 

Waste activated sludge (WAS) generated by the biological treatment is recycled to the primary 115 

sedimentation unit and mixed with primary sludge. The final concentration of the thickened 116 

mixed sludge is around 5% total solids (TS). About 90% of the mixed thickened sludge is fed to 117 

an anaerobic digestion unit (1800 m3 working volume). Digestate is dewatered by a centrifuge 118 

with the addition of polyelectrolyte; the solid fraction is mechanically composted and used as 119 

agricultural fertilizer. The anaerobic supernatant is sent to the equalization tank (of 90 m3) in the 120 

SCENA system for the biological N and P removal. 121 

The remaining portion of mixed sludge (10%) is fed to a sequencing batch fermentation reactor 122 

(SBFR) with hydraulic retention time (HRT) equal to 5 days. The SBFR is operated under 123 

mesophilic condition (37°C) for the alkaline fermentation of thickened sewage sludge and the on-124 

site production of carbon source enriched of VFAs (mainly acetic and propionic acids). Daily, 10 125 

m3 of fermentation sludge are extracted and replaced with fresh thickened sludge. The solid/liquid 126 

separation of the fermented sewage sludge is carried out by a screw-press (SCAE), generating ~2-127 
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4 m3/h of fermentation liquid rich of VFAs (in total, ~ 10.5 m3/d). The latter is collected in a 128 

storage tank of 20 m3 and automatically dosed during the anaerobic and anoxic phases of a short-129 

cut sequencing batch reactor (SBR) based on pH and conductivity sensors. The solid fermented 130 

fraction (13-15% TS based) is mixed with the thickened mixed sludge and fed to the anaerobic 131 

digestor. 132 

The anaerobic supernatant is treated in an SBR with a maximal working volume of 70 m3 (3-4 133 

cycles daily). The SBR is fed with ~10-15 m3 of anaerobic supernatant in each cycle that is 134 

treated via nitrite enhanced phosphorus removal associated with nitritation-denitritation 135 

(S.C.E.N.A process). The typical SBR (Figure 1) cycle consists of feeding (6-8 min), anaerobic 136 

conditions (30 min), aerobic conditions (200-240 min), anoxic (~60-140 min), settling (30 min) 137 

and discharge (8 min). The sensors integrated in the SBR include: pH, Dissolved Oxygen (DO), 138 

conductivity, Oxidation Reduction Potential (ORP), mixed liquor suspended Solids (MLSS) and 139 

temperature. Conductivity and pH are used to control the length of the aerobic and anoxic phases 140 

and the carbon source dosage. Additionally, variable frequency driver is used to control the air 141 

flow-rate of the blowers, maintaining the dissolved oxygen during aerobic phase in the range of 142 

1.0 to 1.5 mg/L. The aeration system consists of volumetric blowers (nominal power 11 kW) and 143 

n80 diffusers (INVENT), providing ~500 m3/h of compressed air at 400 mbar of pressure.  The 144 

treated supernatant is recirculated back to the WWTP headworks.  145 

A monitoring campaign was conducted in the sidestream line at Carbonera WWTP treatment 146 

plant for approximately 4 months (January 2019 – April 2019). Dissolved N2O concentrations 147 

were measured using a polarographic Clark-type electrode (Unisense, Aarhus, Denmark). To 148 

supplement the long-term monitoring campaign with Unisense probes, N2O emissions in the 149 

headspace of the SBR reactor, were also continuously monitored with MIR9000CLD analyser 150 

(Environment Italia S.p.A.) during March – April 2019. Details of the monitoring campaign, N2O 151 



8 

 

emissions’ calculation and laboratory analyses are provided in the supplementary material (S1-152 

S3).  153 

[Figure 1] 154 

2.2 Data analysis 155 

2.2.1 Methodological Framework 156 

Figure 2 summarises the methodological framework of the study. Phase one includes preliminary 157 

analysis of the collected data. Features extraction and density-based clustering was applied (Ester 158 

et al., 1996),  to isolate  abnormal cycles. The methodology and results of abnormal cycles’ 159 

isolation are given in the supplementary material (section S4). In phase two, the behaviour of 160 

N2O emissions and dissolved N2O concentration during normal operation was investigated; 161 

efforts were focused to identify dependencies with the operational dataset and laboratory 162 

analyses. Finally, in phase three, classification and regression models were trained to predict the 163 

behaviour of aerobic dissolved N2O concentration in the different cycles. A support vector 164 

machine classification (SVM) and regression (SVR) models were constructed (Cortes and 165 

Vapnik, 1995).  166 

The first step for the prediction of the average aerobic dissolved N2O concentration included the 167 

training of an SVM classifier (ANOXSVM) to predict whether dissolved N2O will be consumed 168 

during the anoxic phase. This was significant, given that accumulated dissolved N2O in the 169 

beginning of the aerobic phase, will be stripped during aeration. All cycles were divided in two 170 

classes: class anoxA (dissolved N2O < 0.6 mg/L) and class anoxB (dissolved N2O > 0.6 mg/L). 171 

The dissolved N2O concentration threshold was set equal to 0.6 mg/L, since in ~88% of these 172 

cases, N2O was consumed by the end of subsequent anaerobic phase. In cycles belonging to class 173 

anoxA, no N2O carryover was assumed. It is important to note that the term anaerobic phase, is 174 
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used to describe the first operational phase of the SBR (Figure 1) within each cycle and is not 175 

necessarily representative of the actual conditions in the reactor.  176 

Subsequently, an SVM classifier (ANSVM) was trained to predict if dissolved N2O will be 177 

consumed in the subsequent anaerobic phase. The threshold of N2O at the end of the anaerobic 178 

phase was set equal to 2.6 mg/L (sensor calibration limit).  Therefore, anaerobic phases with 179 

accumulated N2O were classified in two groups: class anaerA (N2O concentration < 2.6 mg/L) 180 

and anaerB  (N2O concentration > 2.6 mg/L) . Cycles belonging to anaerA class, were used to 181 

train an SVR model (ANSVR) to predict the dissolved N2O concentration at the end of the 182 

anaerobic phase.  183 

Finally, an SVR model was trained to predict the average N2O concentration during the aerobic 184 

phase (AERSVR), utilizing the ANSVR model predictions for cycles with initial aerobic N2O less 185 

than 2.6 mg/L. Finally, the aerobic SVR model was also tested to cycles belonging in class 186 

anaerB  (N2O concentration > 2.6 mg/L). In anaerB cycles, initial aerobic N2O accumulation 187 

exceeds the calibration limit of the sensor. Additionally, aerobic N2O accumulation starts before 188 

completion of the stripping of pre-existing dissolved N2O. In these cases, the average dissolved 189 

N2O concentration of the cycle, was calculated considering the period from the first minimum of 190 

dissolved N2O concentration until the end of aeration (or after 30 min if a local minimum did not 191 

exist). Additionally, initial N2O accumulation was assumed to be equal to 0.6 mg/L (average 192 

minimum after initial N2O stripping observed in these cycles). 193 

 In practice, the methodology followed was not linear as it is illustrated in Figure 2; it involves 194 

several backward and forward loops between the different steps. The feedback loops were 195 

necessary to leverage the knowledge discovered and adjust the data-preparation (i.e. new features 196 

extraction, different pre-processing) and mining phases. 197 
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[Figure 2] 198 

2.2.1 Support Vector Machines classification and Support vector regression 199 

Support vector machines (SVMs)  are a range of  supervised non-parametric classification and 200 

regression algorithms that have various applications in several fields including hydrology 201 

(Raghavendra and Deka, 2014), bioinformatics (Byvatov and Schneider, 2003) and wastewater 202 

(Corominas et al., 2018). For instance, in wastewater, support vector regression (SVR) has been 203 

successfully applied to data generated from mechanistic modelling of biological processes (Fang 204 

et al., 2011) or to experimental data (Seshan et al., 2014)  to predict reactors’ performance.  205 

SVM classification and SVR models were constructed to predict the behaviour of dissolved N2O 206 

production/consumption in different phases of the SBR operation (Figure 2). SVM aims to define 207 

an optimum separating hyperplane in the feature space that maximizes the margin between two 208 

different classes. Classes with large margins are clearly separable and provide a ‘safety’ for the 209 

generalisation of the algorithm when applied to new points. In practical applications, the 210 

overlapping of a number of data belonging to the two classes, is common. Therefore, soft margins 211 

are introduced to allow a number of misclassifications to identify feasible solutions when the 212 

training dataset is not strictly linearly separable. Similarly, in the SVR case, the aim of the 213 

method is to identify the hyperplane that has the minimum distance to all data points. A complete 214 

description of the SVM and SVR algorithms is provided in the supplementary material. Radial 215 

basis function (RBF) was selected to construct the models in this study. The ‘kernel trick’ and 216 

enables SVMs to operate even in infinite feature space (where data are mapped), without in 217 

practice executing calculations there (Luts et al., 2010).  218 

The algorithms were implemented with the kernlab package (Karatzoglou et al., 2004) in R 219 

software. Repeated 10-fold cross validation (3 repetitions) was applied to select the cost and 220 
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gamma (�) regularization parameters over a grid-search with the caret package (Kuhn, 2008). The 221 

cost determines the penalty of misclassified instances or instances violating the maximal margin 222 

whereas � determines the amplitude of the kernel. The dataset was randomly divided into test and 223 

train, with 70% of the available data used for training the SVM model and 30% used for testing. 224 

In the classification case, over-sampling was applied for the minority classes within the 10-fold 225 

cross validation loop (before training). Local models were developed based on observations from 226 

each phase of the SBR reactor instead of the dataset from the duration of the whole cycle. The 227 

underlying characteristics and dependencies of the operational variables vary between anoxic, 228 

aerobic and anaerobic conditions. Additionally, the performance of the system under different 229 

phases within the cycle can also vary. There are significant benefits in the development of local 230 

phase-based models. The behaviour of dissolved N2O and triggering operational conditions vary 231 

between the different phases; local models enable to investigate the phase-based dependency 232 

structures that would not be possible using the whole cycle dataset. The performance of the 233 

classification SVM models were evaluated based on accuracy and kappa and from the sensitivity 234 

and specificity as described in the supplementary material (S3.1). Similarly, the regression 235 

models were evaluated considering the root mean squared error (RMSE) and R-squared (R2) 236 

(S3.1). 237 

3. Results and discussion 238 

3.1 SCENA performance 239 

The SBR treats up to 43 kg of N/day of anaerobic supernatant, which results in a volumetric 240 

nitrogen loading rate up to 0.78 kgN/m3 day. The performance of the SBR reactor in terms of 241 

NH4-N removal, was stable during the monitoring campaign. During system’s normal operation 242 

(January 2019 - April 2019), the average removal efficiency of NH4-N, TN and PO4-P was 78%, 243 
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~77% and 84% respectively. Influent and effluent concentrations of the SCENA system for the 244 

duration of the monitoring campaign are provided in Table 1. A detailed description of the 245 

abnormal cycles isolated is provided in the supplementary material 246 

[Table 1] 247 

3.2  N2O Emission factor 248 

N2O emissions were measured using a gas analyser (March – April 2019); on average ~0.8 kg of 249 

N2O-N was emitted in each cycle, equivalent to 7.6% of the NH4-N load in the SBRR.  In terms 250 

of the NH4-N removed the N2O EF was equal to 11% (±4). The emissions during the aerobic 251 

phase were considered. N2O emissions exhibited significant variability ranging from 0.14 kg 252 

N2O-N/cycle (1.3% of NH4-N load) to ~2 kg N2O-N/cycle (19% of NH4-N load) as shown in 253 

Figure 3 (a). Emission peaks higher than 1.5 kg N2O-N/cycle and the increasing trend observed 254 

close to the end of the monitoring campaign coincide with peaks in the conductivity change in the 255 

aerobic phase of the cycles (Figure 3 (b)). Laboratory analyses performed approximately four 256 

times per week, did not demonstrate any significant changes in the influent COD, NH4-N loads 257 

and removal efficiencies linked with the increasing trend of the emissions observed in Figure 3 258 

(a). Given the wide range of the N2O emissions observed in the system, in the following sections, 259 

efforts were focused to identify triggering operational conditions.  260 

[Figure 3] 261 

3.3 Energy consumption vs N2O emissions 262 

The operational carbon footprint of the sidestream line was estimated using the direct GHG 263 

emissions (from N2O) and electricity consumption. The electricity consumption was relatively 264 

steady over the monitoring period; on average ~5.4 kWh was consumed in the SBR for the 265 

removal of 1 kg of NH4-N from the anaerobic supernatant. The average energy consumption of 266 
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the SBR represented ~77% of the total electricity consumption of the SCENA system. On 267 

average ~48.7 kg of CO2eq are generated for the removal of 1 kg of NH4-N due to the direct N2O 268 

emissions and electricity consumption in the system. The contribution of the total N2O emissions 269 

to the operational carbon footprint of the S.C.E.N.A process ranged from 66.7% to 96.8% when 270 

all the equipment electricity consumption (i.e. fermenter, dynamic thickener) were considered. 271 

Given the variability of the  N2O emissions observed in the system (Figure 3) the kg of  CO2eq 272 

emitted per kg of NH4-N removed ranged between 9.5 kg  CO2eq to 117.7 kg  CO2eq. Figure 4 (a), 273 

shows the average operational carbon footprint (considering direct  N2O emissions and electricity 274 

consumption) of the SCENA system for two cases with different ranges of  N2O emissions. In the 275 

first case (26/03), a considerable amount of N2O was emitted, equal to ~10.5% of the influent 276 

NH4-N load. In the second case, the emissions were significantly lower, equal to ~4% of the 277 

influent NH4-N load. Both cases are characterised by similar influent NH4-N concentrations, 278 

phase duration, temperature and ammonia removal efficiencies (~79%). The DO concentration is 279 

equal to ~1 mg/L. In case 1, the operational carbon footprint of the process is ~136% higher 280 

compared to case 2. This example shows that under similar conditions (considering laboratory 281 

analyses, average pH and DO), dissolved N2O concentrations can vary significantly in the studied 282 

system. Investigation of the behaviour of conductivity during the two aerobic phases, showed 283 

higher conductivity and pH decrease in case one (~ 510 μS/cm and ~1 respectively) compared to 284 

case two (~350 μS/cm and 0.7 respectively) (Figure 4 (b) and (c)). Additionally, the initial 285 

aerobic ORP in case 2, was higher (-43 mV) compared to case 1 (-274 mV) (Figure 4 (b)). 286 

Therefore, efforts to understand the N2O triggering operational conditions and mitigate GHG 287 

emissions, should consider the dynamic in-cycle behaviour of the variables monitored in the 288 

system. The relationship between the operational variables (i.e. DO, NH4-N concentration, ORP, 289 

conductivity) will be discussed in the following sections.  290 
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[Figure 4] 291 

3.4 Variability of N2O emissions during normal operation  292 

N2O was emitted during aeration phase in all cycles and correlated significantly with the 293 

dissolved N2O accumulation.  One representative cycle profile for the dissolved N2O 294 

concentration and N2O emissions in cycles starting without dissolved N2O accumulation from the 295 

previous cycle is shown in Figure 5, together with the DO, NH4-N, conductivity, ORP and pH. 296 

ORP at the beginning of the aerobic phase shows a correlation with the DO, whereas N2O 297 

accumulation is minimum. Dissolved N2O increases in the first 60-70 min of aeration (a small 298 

change in the pH slope can be seen coinciding with the peak of accumulated N2O) indicating that 299 

the generated N2O generation is higher than the stripped N2O. N2O accumulation shows a 300 

decreasing trend after ~90 minutes of aeration. Subsequently dissolved N2O concentration 301 

increases when aeration stops, and the anoxic phase starts. This shows that production of N2O 302 

continues under decreasing DO and until DO depletion. The calibration range of the dissolved 303 

N2O probe is between 0 - 2.6 mg/L. Therefore, the accumulation of dissolved N2O can be higher 304 

than the peak shown in Figure 5. During the anoxic phase, pH increases rapidly during the dosage 305 

of fermentation liquid, followed by a slow decrease upon the end of carbon dosage phase. A 306 

sudden change in the ORP signal slope (‘nitrite knee’) indicates the depletion of nitrite whereas 307 

TN still exists in the form of N2O. Accumulated N2O is subsequently depleted rapidly after NO2
-308 

N depletion. 309 

[Figure 5] 310 
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3.5 The pattern of N2O emissions  311 

Offline data from laboratory studies and the ranges of the operational variables were analysed in 312 

order to investigate significant changes that contribute to high accumulation of dissolved N2O 313 

concentration and high N2O emissions. 314 

Figure 6 (a) shows the daily average dissolved N2O concentration (coloured points) during 315 

aerobic phase versus conductivity at the end of aerobic phase and the effluent NH4-N 316 

concentration. Conductivity is significantly related and can be linked with the NH4-N 317 

concentration in the reactor (spearman correlation coefficient equal to 0.97). High average 318 

aerobic dissolved N2O concentration (>1.5 mg/L) was mainly observed with NH4-N 319 

concentrations lower than 150 mg/L and higher than 300 mg/L in the effluent of the SBR. 320 

Additionally, the spearman correlation coefficient between dissolved N2O and average aerobic 321 

conductivity decrease rate (μS/cm/min) was equal to -0.7 and N2O concentration peaks were 322 

observed for conductivity decrease rate > 1.8 μS/cm/min. The latter indicates that higher 323 

emissions occur under high ammonia removal efficiency that can be linked with higher ammonia 324 

oxidation rates (AOR) (i.e. due to pH values observed  ~ 8) triggering the NH2OH oxidation 325 

pathway or higher than average  NO2
-N accumulation (triggering nitrifier denitrification 326 

pathway). Domingo-Félez et al., (2014) found that N2O production rates were positively 327 

correlated with the extant nitrification rate in a single-stage nitritation/Anammox reactor. 328 

Similarly, Law et al. (2011) identified a linear relationship between AOR and  N2O emissions in a 329 

partial nitritation SBR reactor treating the reject water from anaerobic digestion. Law et al. (2011) 330 

suggested that is attributed to higher accumulation of the ammonium oxidation intermediates 331 

(hydroxylamine (NH2OH) and nitrosyl radical (NOH)) leading to faster  N2O formation or to the 332 

increased use of electrons reducing nitrite to nitric oxide (nitrifier denitrification pathway) under 333 

low DO concentrations. High nitrite accumulation has been also linked with elevated N2O 334 
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emissions and the nitrifier denitrification pathway, especially under low DO concentrations 335 

(Tallec et al., 2006; Kampschreur et al., 2008; Desloover et al., 2011; Peng et al., 2015; Massara 336 

et al., 2017; Law et al., 2012). For instance, Peng et al. (2017) and Kampschreur et al. (2009), in a 337 

nitritation-denitritation SBR and a full-scale single stage nitritation-Anammox reactor 338 

respectively, identified linear relationship between nitrite accumulation and  N2O emissions at 339 

DO levels below 1.5 mg/L. Similarly, Tallec et al (2006) in a nitrifying activated sludge observed 340 

eightfold increase of N2O emissions with the addition of nitrite pulses (10 mg/L) at DO equal to 1 341 

mg/L. Therefore, both hydroxylamine oxidation and the nitrifier denitrification are possible 342 

during aeration in the investigated SBR. 343 

The average dissolved N2O concentration during the aerobic phase of different cycles varied 344 

significantly in relation to the average DO concentration. Figure 6 (b), shows that the dissolved 345 

N2O concentration peaks coincided with average DO concentrations less than 0.9 to 1 mg/L. The 346 

spearman correlation coefficient between dissolved N2O and DO concentrations was equal to -347 

0.7. The coloured points in the Figure, represent the ORP at the end of the aerobic phase; ORP is 348 

higher than 40 mV in the majority of the cycles with average aerobic dissolved N2O 349 

concentration less than 1 mg/L. Only cycles without  dissolved  N2O accumulation from the 350 

previous anoxic phase are shown in the graph. Stenström et al. (2014) showed decreasing DO 351 

concentrations lower than 1–1.5 mg/L are linked with higher nitrite accumulation and are 352 

positively correlated with N2O emissions during nitrification in a full-scale predenitrification-353 

nitrification SBR treating anaerobic supernatant. Similarly, Pijuan et al., (2014) reported an 354 

increase of  N2O emissions in a nitritation reactor with the reduction of DO from 4 to <1 mg/L. 355 

During the monitoring period, blowers operated at maximum flow-rate. Therefore, the presence 356 

of residual biodegradable COD concentration in the aerobic, is expected to decrease DO 357 

concentration. Similarly, higher influent NH4
+ loads or higher ammonia oxidation rates (that can 358 
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also result in increased NO2
- accumulation) can impact the DO concentration in the system. The 359 

dissolved N2O concentration can be affected by a combination of variables; therefore, it cannot be 360 

deduced that the decreased DO is the sole contributing factor triggering the increased N2O 361 

generation observed. 362 

[Figure 6] 363 

3.6 Impact of accumulated N2O in the end of anoxic and anaerobic phase 364 

Several parameters have been reported to affect the N2O accumulation under anoxic conditions, 365 

such as the inhibition of the nitrous oxide reductase (Nos) by free nitrous acid (FNA) or high 366 

accumulation of NO2
-, the electron competition between electro acceptors and the type of carbon 367 

source (Itokawa et al., 2001; Pan et al., 2013; Zhou et al., 2008; Zhu and Chen, 2011). 368 

Additionally, low values of COD/N can result in incomplete denitritation and therefore, N2O 369 

accumulation via the heterotrophic denitrification pathway during the anoxic phase of the SBR. 370 

Accumulated N2O in the end of the anoxic phase is stripped in the subsequent cycle, increasing 371 

the N2O emissions.  Caranto et al. (2016) have recently showed that N2O can be the main product 372 

of anaerobic NH2OH oxidation catalysed by the cytochrome P460 in N. europaea. The latter can 373 

be an evidence of the biological N2O generation under limited DO and high NH3 concentrations, 374 

both conditions occurring in the target system in the during the transition from aerobic to anoxic 375 

phases when N2O accumulation rapidly increases. 376 

In this study, the average soluble COD concentration in the fermentation liquid was equal to 377 

13082 mg COD/L over the monitoring period (Table 1). Overall, in >27% of the examined cycles 378 

the  N2O was completely consumed by the end of the anoxic phase. Zhu and Chen, (2011), 379 

showed that the use of sludge alkaline fermentation as carbon source in an anaerobic-aerobic 380 

system treating high-strength stream, can reduce the N2O production by up to 68.7% compared to 381 
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alternative carbon sources (i.e. acetic acid). On the other hand, Li et al., (2013a) in a process 382 

utilizing PHA as internal carbon source, observed higher N2O production and reduction rates at 383 

higher influent COD concentrations linked with higher anaerobic PHA synthesis (ranging from 384 

100 to 500 mg/L). The higher N2O production rates were attributed to the accumulated NO2
- 385 

inhibiting the N2O reduction. 386 

The dissolved N2O concentration in the anoxic phase exceeded the calibration limit of the 387 

sensors; only cycles in which “nitrite knee” was observed and N2O reduced to values lower than 388 

2.6 mg/L could be investigated. Therefore, the effect on NO2
- in anoxic N2O generation could not 389 

be studied. However, studies have shown that elevated NO2
- concentrations during denitrification 390 

can reduce the denitrification rate and increase the N2O accumulation (Schulthess et al., 1995). 391 

The electron competition between nitrite reductase NIR, nitric oxide reductase (NOR) and nitrous 392 

oxide reductace (NOS) is intensified under high NO2
- concentrations; NOS is less competitive 393 

under limitation of electron donor and this will result in N2O accumulation (Pan et al., 2013; Ren 394 

et al., 2019). 395 

Based on the profiles shown in Figure 5 ,  N2O was always consumed after the depletion of NO2
- 396 

during denitritation; specifically, dissolved  N2O concentration decreased after the “nitrite knee”. 397 

Gabarró et al. (2014), studied a partial-nitritation reactor treating landfill leachate, and operated 398 

under alternating aerobic/anoxic conditions to allow heterotrophic denitritation. The authors 399 

demonstrated that significant N2O accumulation was observed during anoxic periods.  NO2
- 400 

denitrification rate was higher under both biodegradable COD limiting conditions and after 401 

acetate addition compared to N2O reduction; N2O reduction rate was maximum after NO2
- 402 

removal (similar to what was observed in this study). In denitrifying phosphorus removal 403 

processes, Li et al. (2013) showed that the N2O accumulation can be higher compared to 404 

conventional denitrification; the authors suggested that in the electron competition between 405 
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denitrifying enzymes and PHA,  N2O reductase is less competitive. On the other hand, Ribera-406 

Guardia et al. (2016) investigated the electron competition during denitrification (PHA as the sole 407 

carbon source) of enriched dPAO and dGAO biomass and found that higher  N2O accumulation 408 

in the latter culture. Additionally, the last step of denitrification was inhibited in dGAO cultures ( 409 

N2O accumulation up to ~84% of the N-reduced), under high levels of NO2
- (~ 15 mgN/gVSS) 410 

whereas N2O consumption in dPAO biomass was not affected. Wang et al., (2015) demonstrated 411 

that during denitrifying phosphorus removal, mitigation of NO2
- accumulation is possible via 412 

continuous dosage of phosphate and nitrate. Wang et al., (2011), showed that optimisation of the 413 

synthesis of PHA during the anaerobic phase can mitigate the N2O production during the anoxic 414 

phase leading to complete denitrification. 415 

In the system, N2O emissions and dissolved N2O concentration at the aerobic phase is strongly 416 

related with incomplete denitritation in the previous cycle. In ~26% of the cycles with incomplete 417 

denitritation, the N2O concentration did not decrease below ~2 mg/L in the anaerobic phase  and 418 

therefore the stripping of accumulated N2O in the subsequent aerobic phase was substantial. 419 

Figure 7 (a) shows representative profiles of the dissolved N2O concentration and the N2O 420 

emissions based on different initial concentrations of N2O in the beginning of the aerobic phase. 421 

The profiles of the ORP, DO and pH are comparable in the preseted cycles (Figure 7 (b)). In 422 

cycle B ~0.56 kgN of N2O were emitted during the aerobic phase, wheareas in cycle A N2O 423 

emissions are equal to 0.33 kgN (given the duration of these cycles is not equal only 220 min 424 

were considered). The initial dissolved N2O concentration in cycles A and B is equal to 0.27 and 425 

>2.6 mg/L respectively. The N2O emissions increased significantly due to the accumulated N2O 426 

at the beginning of the previous anoxic phase that was stripped at the beginning of aeration. 427 

Overall, in ~72% of the cycles, the dissolved N2O concentration at the beginning of the anaerobic 428 

phase was higher than 0.3 mg/L. In cycles with dissolved N2O concentration higher than 0.3 429 
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mg/L at the beginning of the anaerobic phase, the change in dissolved N2O concentration during 430 

the anaerobic phase was highly correlated with the ORP at the beginning of the anaerobic phase. 431 

Additionally, the spearman correlation coefficient between the magnitude of the ORP reduction 432 

and magnitude of the dissolved N2O reduction was equal to 0.7. Figure 8 shows the boxplots of 433 

dissolved N2O reduction in relation to initial anaerobic ORP and ORP change for two cases: i) 434 

negligible dissolved N2O change mainly due to influent dilution or anaerobic dissolved N2O 435 

concentration > 2.6 mg/L, and ii) occasions with N2O reduction during the anaerobic phase. In 436 

Figure 8 (a) only occassions with ORP decrease higher than -50 mV are shown. The presence of 437 

nitrites in the bulk liquid during the (anaerobic) phase affected the ORP. NO2-N depletion in the 438 

bulk liquid resulted in a sharp “nitrite knee” in the ORP profile (similar to the one observed 439 

during the anoxic phase. Therefore, higher ORP change was expected in cycles with NO2-N 440 

depletion and N2O consumption during the anaerobic phase. 441 

 442 

[Figure 7] 443 

Anaerobic phase term, is used to describe the first operational phase of the SBR (Figure 1) within 444 

each cycle and might not represent the actual conditions in the reactor. For instance, ORP ~ -80 445 

mV in the anaerobic phase of the SBR indicates anoxic conditions, due to residual NO2
-N 446 

concentration from the previous anoxic phase of the reactor.  447 

[Figure 8] 448 

3.7 Prediction and control of N2O accumulation in the anoxic and anaerobic phases 449 

As discussed in section 3.6, the behaviour of ORP was significantly related with the behaviour of 450 

NO2
- and consequentially of the dissolved N2O concentration during the anaerobic phase. 451 

Therefore, in the ANSVM model, features related with the ORP profile were mainly used (Table 452 
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2). Similarly, there was a strong link with the ORP behaviour and the nitrite “knee” with the N2O 453 

accumulation during the anoxic phase. The features considered in ANOXSVM model are shown 454 

in Table 2.  455 

[Table 2] 456 

The classification matrices for train and test datasets of the ANSVM and ANOXSVM models are 457 

presented in Table 3. The average classification accuracy for the ANOXSVM model, was equal 458 

to 99% and 97% for the test and validation datasets. Similar results were obtained for the 459 

anaerobic phase with 95% and 98% accuracy in the train and test datasets respectively. 460 

Jaramillo et al. (2018) developed an SVM classifier to estimate online the end of partial 461 

nitrification in a laboratory aerobic-anoxic SBR based on features extracted from pH and DO 462 

sensors over time-windows, resulting in 7.52% reduction in the operational time. In this study, the 463 

main focus was to estimate offline the behaviour of N2O emissions based on historical batch data. 464 

The results from this study indicate that ORP and pH sensor data can be used to detect the 465 

consumption of N2O during the nitritation/nitrification in SBR reactors. The results show that 466 

knowledge-based feature-extraction and SVM classification could help in explaining the 467 

behaviour of the system and potentially optimise the control to consider the consumption of 468 

accumulated N2O (i.e. in this system the denitritation can be stopped after the local maximum of 469 

the ORP rate after the nitrite “knee” in all the cycles investigated.) 470 

[Table 3] 471 

Figures 9 (a) and (b) illustrate the predicted and measured N2O concentration at the end of the 472 

anaerobic phase (ANSVR model). The SVR parameters were optimised based on the root mean 473 

square error using the train dataset. RMSE of the SVR model was equal to 0.11 and 0.1 mg N2O-474 

N/L for the train and test datasets respectively (R-squared equal to 0.85 and 0.75 respectively).  475 
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As shown in Figure 9 (b) the simulation results follow the behaviour of the actual dissolved N2O 476 

concentrations observed. One of the major factors affecting the performance is the limited 477 

number of data points, but the prediction is still accurate. 478 

[Figure 9] 479 

3.8 Prediction of the N2O concentration in aerobic phase 480 

The input features are shown in Table 4 and were selected based on the identified influential 481 

variables. The N2O predicted values of the ANSVR model were used (anaerP). The procedure 482 

followed for the selection of model parameters was similar to the respective one followed for the 483 

anaerobic phase. Additionally, ANSVR test dataset cycles, were identified and used in AERSVR 484 

test dataset A. The model was also applied in anaerB cycles (test dataset B). 485 

[Table 4] 486 

Figure 10 (a), shows the predicted and measured average aerobic N2O concentration for the 487 

trained and test datasets. RMSE of the SVR model was equal to 0.06 and 0.11 mg N2O-N /L for 488 

the train dataset and test dataset A respectively, whereas the R-squared was equal to 0.94 and 489 

0.82 (Figure 10 (a) and (b)).  490 

[Figure 10] 491 

The RMSE of the predicted values for the test dataset B, was equal to 0.29 mg N2O-N/L and the 492 

R-squared was equal to 0.72 (Figure 10 (a)). The AERSVR model underpredicted the average 493 

dissolved N2O concentration of test B dataset. This is expected given that in test B dataset cycles, 494 

the initial aerobic N2O accumulation exceeds the sensor calibration limit. Therefore, on many 495 

occasions the initial aerobic N2O accumulation was also underestimated (section 2.2.1 - anaerB 496 

cycles). An example is shown if Figure 11. In cycle A, the average dissolved N2O concentration 497 
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(calculated as discussed in section 2.2.1 for anaerB cycles) is equal to 1.33 mg/L. The AERSVR 498 

model predicted 0.87 mg/L underestimating the actual concentration (considering initial 499 

accumulation equal to 0.6 mg/L). In cycle B, the AERSVR model predicted N2O concentration 500 

equal to 0.61 mg/L (considering initial accumulation equal to 0.6); the observed average 501 

dissolved N2O concentration (after the local minimum), was equal to 0.6 mg/L.  502 

[Figure 11] 503 

The results show that under the investigated operational conditions, the framework shown in 504 

Figure 2Error! Reference source not found. can provide a good estimation of the real dissolved 505 

N2O behaviour and concentration observed during the different phases of SBR operation. 506 

Instabilities in the performance of machine learning models due to changes in the operational 507 

conditions in wastewater bioreactors have been reported in the literature (Shi and Xu, 2018). 508 

Therefore, long-term datasets and investigation of different patterns and dependencies should be 509 

investigated before model construction. 510 

3.9 Mitigation strategy 511 

During aerobic phases, elevated average dissolved N2O concentration was linked with DO less 512 

than 1 mg/L and increased conductivity decrease rates (conductivity values represent NH4-N 513 

concentration values in the reactor). Therefore, cycles with increased conductivity decrease rate 514 

indicate higher NH4-N removal efficiency and NO2
-N accumulation. Dissolved N2O 515 

concentrations lower than 0.6 mg/L were identified in cycles with average DO concentration 516 

equal to ~1.36 mg/L, and conductivity decrease rate > 1.8 μS/cm/min. Increasing the reactor DO 517 

concentration to values higher than 1.3 mg/L can result in decreased aerobic N2O generation 518 

(Law et al., 2012). However, with the current anaerobic supernatant feeding strategy, blowers 519 

operate at maximum flowrate, so it is not possible to increase the aeration in the system.  520 



24 

 

On the other hand, the implementation of a step-feeding strategy could foster the reduction of 521 

N2O emissions thanks to the lower NH4-N and free ammonia (FA) concentration at the beginning 522 

of the cycle, which has been recognized as a triggering factor for N2O production (Desloover et 523 

al., 2012). Conductivity at the end of the cycle can act as surrogate to estimate the effluent NH4-N 524 

concentration of the reactor and optimize the anaerobic supernatant feeding load. Consequently, 525 

the aerobic initial NH4-N concentration could be controlled to avoid either FA accumulation or 526 

high AOR with subsequent N2O generation.  527 

Additionally, frequent alternation of aerobic/anoxic phases can be introduced in order to avoid 528 

high nitrite accumulation. The impact of nitrite concentration on N2O production can be also 529 

minimized by ensuring adequate DO levels within the reactor to inhibit the nitrifiers 530 

denitrification pathway (Blum et al., 2018; Law et al., 2013). Rodriguez-Caballero et al. (2015) 531 

reported that in a full-scale SBR treating municipal wastewater, intermittent aeration (alternation 532 

between 20–30 min oxic and anoxic) led to a minimization of N2O compared to long oxic periods 533 

that enhanced N2O emission. The authors related this behaviour to the presence of shorter 534 

aeration times with subsequently lower nitrite accumulation and N2O production.  535 

In addition, Su et al. (2019) reported that slightly acidic or neutral pH in nitritation reactors (at 536 

values that do not inhibit microbial activity) can decrease N2O generation  by up to seven times. 537 

Based on the pH profiles observed in this study, regulation of aerobic (alkalinity consumption) 538 

phase duration can be also considered to control the pH at lower levels. 539 

The developed models can be used to estimate rapidly and precisely the hard-to-measure N2O 540 

concentrations during aeration and detect N2O accumulation in non-aerated phases. Additionally, 541 

it can alert operators about cycles with anoxic and anaerobic N2O accumulation and elevated 542 

aerobic N2O concentrations, that require modifications to the system operation. The ANOXSVM 543 
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model can predict if N2O is consumed in anoxic phases or if anoxic duration should be extended. 544 

Thus, additional provision of fermentation liquid can be performed to promote N2O consumption 545 

through denitritation, when after 70-90 minutes the anoxic SVM model still indicates incomplete 546 

denitritation.  547 

This study provides evidence on the relationship of DO, ORP and conductivity and pH with the 548 

dissolved N2O concentration (in terms of correlation coefficients, behaviour and thresholds that 549 

indicate specific ranges of N2O accumulation). These findings together with the models 550 

developed in this study, can be the basis for the development of intelligent control algorithms to 551 

integrate emissions control in sidestream SBR reactors performing nitritation/partial nitritation or 552 

other systems similar to S.C.E.N.A. Moreover, features based on ORP, pH, DO and conductivity 553 

measurements in wastewater SBR processes, that can be used to predict dissolved N2O 554 

concentrations have been identified. The developed framework can be also tested in continuous 555 

processes for the data-driven prediction of N2O emissions. 556 

Conclusions 557 

Knowledge discovery and data-mining techniques were employed to extract useful information 558 

about the dynamic behaviour of N2O, and to predict the behaviour of dissolved N2O concentration 559 

in a full-scale SBR reactor treating the anaerobic supernatant. The main conclusions are 560 

summarized as follows:  561 

• The N2O emissions in SCENA process varies from 1.3% to 19% of NH4-N load, 562 

therefore they can contribute considerably to the operational carbon footprint of the 563 

process (~90% on average).  564 

• Average aerobic dissolved N2O concentration could significantly under similar influent 565 

loads, DO, pH and removal efficiencies. Extracting information from the dynamic in-566 
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cycle behaviour of the variables monitored in the system is a significant step towards 567 

understanding N2O behaviour.  568 

• Aerobic dissolved N2O concentration peaks (>1 mg/L), were observed in cycles with 569 

average DO concentrations less than 0.9-1 mg/L and ORP concentration at the end of the 570 

aerobic phase less than 40 mV. Conductivity was correlated with the reactor NH4-N 571 

concentration (0.97). N2O peaks were also observed in cycles with elevated decrease of 572 

conductivity during aeration. Step-feeding, control of initial NH4-N concentrations and 573 

control of pH via the regulation of aerobic phase duration can mitigate the N2O peaks 574 

observed in this study. 575 

• The accumulation of N2O at the end of the SBR anoxic phase was stripped in the 576 

subsequent aerobic phase and had a significant impact on the amount of N2O emitted. 577 

The accumulated N2O was consumed rapidly after nitrite ‘knee’ that was linked with the 578 

nitrite depletion. The ANOXSVM model can be used to detect if anoxic duration should 579 

be extended or additional fermentation liquid provided to enhance N2O consumption in 580 

anoxic phases.  581 

• This study shows that low-cost sensors, conventionally used to monitor SBR systems (i.e. 582 

pH, DO, ORP), have good capabilities to predict the dissolved N2O behaviour and 583 

concentrations when couple with knowledge discovery techniques. The AERSVR model, 584 

showed reliable estimations of the aerobic N2O concentration and can provide guidance 585 

to WWTPs operators, on whether N2O levels are acceptable or mitigation actions are 586 

required. 587 
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Table 1: Influent and effluent concentrations of the SCENA system 

 Parameter unit mean Sd 

SBR 
Influent 

NH4-N mg/L 992.5 90 
PO4-P mg/L 30.8 6.9 

pH 8.2 0.2 
sCOD mg/L 1111.7 562 

Flow-rate  m3/d 30 (8.4 per cycle) 2.2 
Gas flow-rate  m3/h 450 (170 - 520) 78 
Dimensions mxmxm 8 x 3.5 x 2.5 

SBR 
Effluent 

NH4-N mg/L 214.7 80.93 
 NO2-N mg/L 3.23 9.7 
NO3-N mg/L 0.28 0.34 
PO4-P mg/L 6.78 2.22 

pH 8.04 0.3 

SBR 
Reactor 

MLSS g/L 5.05 0.87 
HRT d-1 1.05  
SRT d-1 15  
pH  7.7 0.5 
T °C 30.02 1.56 

Fermentati
on Unit 

NH4-N mg/L 715 72.6 
PO4-P mg/L 86 12 

pH  5.6 0.6 
T °C 36 5.1 

sCOD mg/L 13082 2228 
ferm_Hac mg/L 3250 546 
ferm_HPr mg/L 2281 588 
ferm_Hbut mg/L 1347 196 

Flow-rate to SBR  m3/cycle 7.45 (~2.41 per cycle) 3.0 

 

 



Table 2: Features used in the classification algorithm to predict the accumulation of 

dissolved N2O at the end of the anoxic and anaerobic phases 

Anaerobic Anoxic Anaerobic regression 
ORP phase initial Last ORP value ORP phase initial 
ORP change ORP change ORP change 
First local maximum ORP first 
derivative 

Mean pH  

Local minimum of ORP first 
derivative after first local 
maximum ORP first derivative 

Difference between first local 
maximum (after carbon 
dosage) and subsequent local 
minimum of the ORP first 
derivative 

pH phase initial 

Duration between first local 
maximum and subsequent local 
minimum of the ORP first 
derivative 

Duration of carbon dosage 
Time of ORP first derivative 
minimum/duration of phase 

pH phase initial 

Duration between first local 
maximum (after carbon 
dosage) and subsequent local 
minimum of the ORP first 
derivative 
 

Difference between first local 
maximum and subsequent 
local minimum of the ORP 
first derivative   

Time local minimum ORP first 
derivative/Phase duration 

Last ORP first derivate  

 



Table 4: Features selected in the SVR model for the aerobic phase 

Aerobic Features 
Average conductivity rate 
ORP end of aeration 
ORP increase during aeration 
Conductivity at the beginning of aeration 
Average DO  
pH at the beginning of aeration 
Conductivity increase (based on the conductivity at the end of the aerobic 
phase of the previous cycle) 
pH change during aeration 
Initial aerobicN2O concentration (based on ANSVR predictions) 

 



Table 3: SVM classification results anoxic and anaerobic phases 

Phase Dataset Misclassified Sensitivity  Specificity 
 

Accuracy 
(%) 

Kappa  Class 

Anoxic 
phase 

cycle N 

Train anoxA:  1 
anoxB: 0 

1 0.99 99 0.97 anoxA: Final 
dissolved N2O 

concentration end of 
anoxic < 0.6 mg/L 

 

anoxB: Final 
dissolved N2O 

concentration end of 
anoxic > 0.6 mg/L 

Test anoxA:  1 
anoxB: 0 

1 0.98 98 0.92 

Anaerobic 
phase 

cycle N+1 

Train anaerA:2 
anaerB: 1 

0.98 0.97 97 0.94 anaerA:  N2O end of 
anaerobic > 2.6 mg/L 

 
anaerB:  N2O end of 
anaerobic < 2.6 mg/L 

  Test anaerA:  1 
anaerB: 0 

1 

 
0.97 98 0.95 

     

 



 

Figure 1: Schematic representation of a complete cycle in the S.C.E.N.A process and datasets 

used in the analysis 

 



 

Figure 10: (a) Predicted vs measured dissolved N2O concentration (AERSVR) in the aerobic phase 

for the train dataset, the test dataset A and the test dataset B and (b) comparison of predicted and 

measured dissolved N2O concentration for the test dataset B 

 



 

Figure 11: An example of dissolved N2O profiles for cycles belonging to anaerB cycles (test 

dataset B). The red points represent the first point considered for the calculation of the average 

aerobic N2O accumulation (as described in section 2.2.1). Data points in the beginning of aeration 

exceeding sensor calibration limits are not shown. 
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Figure 2: Methodological Framework followed in the study 



 

Figure 3: (a) N2O emissions and (b) aerobic phase conductivity decrease, during monitoring 

campaign (gas analyser, March-April) 

 



 

Operating 

Conditions 
Unit 26/03 11/04 

Influent NH4-N  mg/L 1186.3 1154.13 

DO mg/L 1.0 1.0 

Anaerobic/Aerobic/ 

Anoxic duration 
h 0.5/3.6/1.5 0.5/3.7/1.5 

Effluent NH4-N mg/L 211.1 185.9 

Effluent NO2-N mg/L ~0 1.6 

Temperature °C 31.7 32.1 

 

Figure 4: (a) Example of the effect of N2O emissions in the operational carbon footprint for two 

cases, (b) aerobic profiles of conductivity, ORP and (c) DO for the two cases shown in (a) 
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Figure 5: Representative cycle profile for the (a) dissolved N2O concentration, N2O emissions, 

conductivity, DO, (b) ORP and pH, and (c) NH4-N, NO2-N and PO4-P concentrations 

 



 

Figure 6: (a) Daily average conductivity at the end of the aerobic phase versis effluent NH4-N 

concentration (coloured points: average dissolved  N2O accumulated in the aerobic phase), (b) 

Aerobic average accumulated dissolved  N2O in respect to DO concentration; only cycles without 

initial  N2O accumulation from the previous anoxic cycle are shown (coloured points: ORP at the 

end of the aerobic phase) 

 



 

Figure 7: (a) Representative profiles of dissolved N2O concentration based on different initial 

concentrations of N2O in the beginning of the aerobic phase and (b) ORP and DO profiles 

 



 

Figure 8: Box-plots of the (a) initial anaerobic ORP and (b) the ORP change during the anaerobic 

phase for cycles with and without  N2O consumption (Class 0: no significant N2O consumption or 

anaerobic N2O concentration > 2.6 mg/L; Class 2:  significant N2O consumption) 

 



 

Figure 9: (a) Predicted vs measured dissolved N2O concentration in the end of the anaerobic 

phase (ANSVR) for the test and train datasets and (b) comparison of predicted and measured 

dissolved N2O concentration for the test dataset 

 



Highlights 
 

• S.C.E.N.A N2O emissions contribute up to 97.3% to the operational carbon footprint  

• Stripping of accumulated N2O from the previous anoxic cycle increases emissions  

• Aerobic dissolved N2O concentration is correlated with DO and conductivity 

• Conductivity can be used to control SBR NH4
+ concentration and N2O 

• N2O can be estimated as a latent parameter from other low-cost sensors  
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