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Abstract

Data Analytics is being deployed to predict thesdiged nitrous oxide (}0) concentration in a
full-scale sidestream sequence batch reactor (SB&¥ting the anaerobic supernatant. On
average, the pD emissions are equal to 7.6% of the,NNHload and can contribute up to 97 % to
the operational carbon footprint of the studieditaition-denitritation and via-nitrite enhanced
biological phosphorus removal process (S.C.E.NT&Ke analysis showed that average aerobic
dissolved NO concentration could significantly vary under damiinfluent loads, dissolved
oxygen (DO), pH and removal efficiencies. A combima of density-based clustering, support
vector machine (SVM), and support vector regress8WiR) models were deployed to estimate

the dissolved BD concentration and behaviour in the different peasf the SBR system.

The results of the study reveal that the aerolisalved NO concentration is correlated with the
drop of average aerobic conductivity rate (spearomrelation coefficient equal to 0.7), the DO
(spearman correlation coefficient equal to -0.7H ahe changes of conductivity between
sequential cycles. Additionally, operational coiwdis resulting in low aerobic @ accumulation
(<0.6 mg/L) were identified; step-feeding, contadl initial NH," concentrations and aeration
duration can mitigate the,® peaks observed in the system. Th® Mmissions during aeration
shows correlation with the stripping of accumuladé® from the previous anoxic cycle. The
analysis shows that® is always consumed after the depletion of,Ni0ring denitritation (after
the “nitrite knee”). Based on these findings SVMsdifiers were constructed to predict whether
dissolved NO will be consumed during the anoxic and anaerphi&ses and SVR models were
trained to predict the D concentration at the end of the anaerobic phasetlze average
dissolved NO concentration during aeration. The proposed aubraccurately predicts the®
emissions as a latent parameter from other low-sestors that are traditionally deployed in

biological batch processes.
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1. Introduction

In recent years the sustainability and operaticgféiciency of wastewater treatment plants
(WWTPs) have come to the fore (Liu et al., 2018ve3al biological technologies such as
partial-nitritation — anammox (anaerobic ammoniuxidation) have emerged, towards the
efficient, low-cost treatment of high-strength nuipal wastewater streams (Lackner et al., 2014,
Zhou et al., 2018). The anaerobic supernatant biy-product of dewatering of the anaerobic
digestion effluent and represents less than 1-2%heftotal influent flow in the WWTP. It
contains 10-30% of the N load and 20-30% of thed® (Janus and van der Roest, 1997; van
Loosdrecht and Salem, 2006). Sidestream treatni¢hé @naerobic supernatant can contribute to
the reduction of energy consumption for N-remodaicrease of nitrogen loads in the secondary
treatment, and the minimisation of risks relate@xoeeding effluent regulatory requirements of
nitrogen concentrations in the water line of WWT{Eskicioglu et al., 2018). However, the
performance and environmental evaluation of differsidestream technologies is still under

investigation (Eskicioglu et al., 2018; Rodriguear@a et al., 2014).

SCENA (Short-Cut Enhanced Nutrient Abatement) isesv sidestream process, that combines
the conversion of NH to NO, under aerobic conditions (nitritation) with thebsaquent
reduction of N@ to nitrogen gas and enhanced biological phosphapteke by polyphosphate-
accumulating organisms (DPAOSs) in a sequencinghbegactor (SBR) (Frison et al., 2015).
External volatile fatty acids (VFAs), are producea acidogenic fermentation of the primary and
secondary sludge on-site and dosed into the SBRa hecent study, Longo et al. (2016),
guantified the environmental and cost benefits Bnpacts of the integration of the SCENA
process in a full-scale WWTP. They reported majoergy savings for aeration after the

integration of sidestream SCENA process. The dixk€t emissions were equal to 1.42% of the
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influent N-load. Short-term monitoring campaigns revamplemented, while the effect of

operational conditions on,® generation was not investigated.

N,O is a potent cause of global warming, its globafming potential is 265 - 298 times more
than that of C® (IPCC, 2013). The emission of .8 in full-scale sidestream partial-
nitritation/partial-nitritation—anammox or nitritation-denitrification systems range from 0.17%
to 5.1% of the influent N-load (average equak1% of the N-load is emitted (Vasilaki et al.,
2019) . Schaubroeck et al. (2015) showed thaD Mmissions from a full-scale sidestream
DEMON process in Austria were significantly highittian the direct BO emissions from the
mainstream treatment in a full-scale WWTP. On ayer8.256 g BD were emitted compared to
0.005 g emitted in the secondary treatment pareated wastewater. The increased diregO N
emissions can be mainly attributed to low DO cotregions, higher ammonia oxidation rates
(AOR) and NQ™ build-up (Desloover et al., 2011; Kampschreur et2008); conditions that also
prevail in the SCENA process. The variability of Efported in sidestream technologies can be
partially attributed to both complex relationshiptween emitted XD and operational conditions
and different configurations (i.e. SBR, continu@ystems), loads (i.e. NH concentrations),
feeding strategies and operational control (i.e. $2®points). Additionally, different interactions
between operational variables trigger a differesponse of bO generation. For instance, in a
recent modelling study of a granular one-stageigaritritation-anammox reactor, Wan et al.
(2019) showed that higher temperatures resultedcireased DD emissions in the presence of
COD (chemical oxygen demand) and in decreas€d énissions in the absence of COD (due to
increased anammox activity and reduction of ,N@ccumulation in higher temperature).
Additionally, the long-term temporal variations difect NO emissions were not adequately
assessed in sidestream technologies; the majdritheo monitoring campaigns in sidestream

reactors lasted less than 5 days (Vasilaki ep@ll9).
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The digitalisation of water services and the dateeth knowledge discovery from wastewater
treatment plant may increase the resilience of matitities under climate change and other
water-related challenges (Sarni et al., 2019). Resteidies have provided extensive overviews of
the use of data-driven techniques in the wasteveatetior for different applications including the
development of soft-sensors, fault prediction andtirebjective optimisation of control of water
utilities (Corominas et al., 2018a; Haimi et al013; Newhart et al., 2019). Data-mining and
extraction of the information hidden in the raw sansignals can facilitate the identification of
patterns and hidden structures and reveal significaformation on the behaviour of .8
emissions in continuous wastewater treatment psesef/asilaki et al., 2018). The SBR in the
SCENA process is multiphase (i.e. anaerobic, aerdmoxic conditions) applying different
operational variables (unsynchronised data), nogali and subject to different disturbances, such
as influent compositions and fermentation liquidrettteristics. Moreover, SBR process data are
based on a 3d-structure that consists of the numibgrcycles, ii) variables and iii) sampling
points within each cycle. Therefore, the identifica of process abnormalities and patterns can
be complicated. dD emissions could be affected by both within-cyanel between-cycle batch

dynamics.

In this study, sensor and laboratory analysesfdata a full-scale SCENA SBR were analysed to
provide insights on the 0 emissions behaviour and generation. A structagoroach was
followed for knowledge discovery from the availalblataset using a combination of abnormal
events detection, classification and regressiohnigcies. The objectives of the study were to i)
investigate whether the sensors integrated in ttstem (i.e. conductivity, pH) can provide
actionable information on the dynamics of,ON emissions, ii) detect hotspots for the

accumulation and emission of,® and iii) develop data-driven regression and diaation
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models to predict the dissolved,® behaviour and concentration for the different ggsa

(anaerobic, aerobic, anoxic) of the SBR.
2. Materialsand Methods
2.1 Processdescription and data origin

The Carbonera plant is designed to treat domestistawater of a population equivalent of
40,000 (dry weather flow equal to 10,000/af). After screening and degritting and primary
sedimentation, the effluent from the primary clerifis sent to a Schreiber reactor (single basin —
working volume 4671 R). Schreiber reactor effluent is pumped to two sdeoy clarifiers (2260

m® each) and subsequently to the tertiary treatmeittfer disinfection and filtration before final

discharge in the Melma River.

Waste activated sludge (WAS) generated by the bicdd treatment is recycled to the primary
sedimentation unit and mixed with primary sludgdeTfinal concentration of the thickened
mixed sludge is around 5% total solids (TS). Ab@® of the mixed thickened sludge is fed to
an anaerobic digestion unit (180G morking volume). Digestate is dewatered by a demfe
with the addition of polyelectrolyte; the solid ¢teon is mechanically composted and used as
agricultural fertilizer. The anaerobic supernatargent to the equalization tank (of 96)rim the

SCENA system for the biological N and P removal.

The remaining portion of mixed sludge (10%) is fech sequencing batch fermentation reactor
(SBFR) with hydraulic retention time (HRT) equal fodays. The SBFR is operated under
mesophilic condition (37°C) for the alkaline ferntegtion of thickened sewage sludge and the on-
site production of carbon source enriched of VFAsifly acetic and propionic acids). Daily, 10
m® of fermentation sludge are extracted and replaggdfresh thickened sludge. The solid/liquid

separation of the fermented sewage sludge is dastieby a screw-press (SCAE), generating ~2-
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4 n/h of fermentation liquid rich of VFAs (in total, 0.5 n¥/d). The latter is collected in a
storage tank of 20 hand automatically dosed during the anaerobic andiaphases of a short-
cut sequencing batch reactor (SBR) based on pHanductivity sensors. The solid fermented
fraction (13-15% TS based) is mixed with the thitke mixed sludge and fed to the anaerobic

digestor.

The anaerobic supernatant is treated in an SBR avitraximal working volume of 70 Hh{3-4
cycles daily).The SBR is fed with $0-15 ni of anaerobic supernatant in each cytblat is
treated via nitrite enhanced phosphorus removabcested with nitritation-denitritation
(S.C.E.N.A process). The typical SBR (Figure 1)leywonsists of feeding (6-8 min), anaerobic
conditions (30 min), aerobic conditions (200-24M)nanoxic (~60-140 min), settling (30 min)
and discharge (8 min). The sensors integrateddrSBR include: pH, Dissolved Oxygen (DO),
conductivity, Oxidation Reduction Potential (ORRiixed liquor suspended Solids (MLSS) and
temperature. Conductivity and pH are used to cbottielength of the aerobic and anoxic phases
and the carbon source dosage. Additionally, vagiditdquency driver is used to control the air
flow-rate of the blowers, maintaining the dissoheed/gen during aerobic phase in the range of
1.0 to 1.5 mg/L. The aeration system consists afraetric blowers (nominal power 11 kW) and
n80 diffusers (INVENT), providing ~500 i of compressed air at 400 mbar of pressurke

treated supernatant is recirculated back to the \W\lW&adworks.

A monitoring campaign was conducted in the sidestréine at Carbonera WWTP treatment
plant for approximately 4 months (January 2019 ~ilA2019). Dissolved NO concentrations
were measured using a polarographic Clark-typetrelde (Unisense, Aarhus, Denmark). To
supplement the long-term monitoring campaign withisgnse probes, & emissions in the
headspace of the SBR reactor, were also continpaushitored with MIR9000CLD analyser

(Environment ltalia S.p.A.) during March — April 20. Details of the monitoring campaign,O\
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emissions’ calculation and laboratory analysespaoeided in the supplementary material (S1-

S3).

[Figure 1]

2.2 Dataanalysis

2.2.1 Methodological Framework

Figure 2 summarises the methodological frameworthefstudy. Phase one includes preliminary
analysis of the collected data. Features extragtimhdensity-based clustering was applied (Ester
et al.,, 1996), to isolate abnormal cycles. Theho@ology and results of abnormal cycles’
isolation are given in the supplementary matesak{ion S4). In phase two, the behaviour of
N.O emissions and dissolved,® concentration during normal operation was ingaséd;
efforts were focused to identify dependencies wilte operational dataset and laboratory
analyses. Finally, in phase three, classificatiod segression models were trained to predict the
behaviour of aerobic dissolved.® concentration in the different cycles. A suppeector
machine classification (SVM) and regression (SVR)deis were constructed (Cortes and

Vapnik, 1995).

The first step for the prediction of the averagmhie dissolved BO concentration included the
training of an SVM classifier (ANOXSVM) to predigthether dissolved XD will be consumed
during the anoxic phase. This was significant, gitbat accumulated dissolved,® in the
beginning of the aerobic phase, will be strippedrdpaeration. All cycles were divided in two
classes: class anoxA (dissolvedN< 0.6 mg/L) and class anoxB (dissolvegDN> 0.6 mg/L).
The dissolved BD concentration threshold was set equal to 0.6 mgjfice in ~88% of these
cases, PO was consumed by the end of subsequent anaertadse pin cycles belonging to class

anoxA, no NO carryover was assumed. It is important to no& the term anaerobic phase, is

8
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used to describe the first operational phase ofSBR (Figure 1) within each cycle and is not

necessarily representative of the actual conditiorise reactor.

Subsequently, an SVM classifier (ANSVM) was trainedpredict if dissolved pO will be
consumed in the subsequent anaerobic phase. Téghtthd of NO at the end of the anaerobic
phase was set equal to 2.6 mg/L (sensor calibrditioit). Therefore, anaerobic phases with
accumulated bD were classified in two groups: class anaerAQNoncentration < 2.6 mg/L)
and anaerB (PO concentration > 2.6 mg/L) . Cycles belonging maexA class, were used to
train an SVR model (ANSVR) to predict the dissolvdgD concentration at the end of the

anaerobic phase.

Finally, an SVR model was trained to predict therage NO concentration during the aerobic
phase (AERSVR), utilizing the ANSVR model predicisofor cycles with initial aerobic J less
than 2.6 mg/L. Finally, the aerobic SVR model wésoaested to cycles belonging in class
anaerB (MO concentration > 2.6 mg/L). In anaerB cycles,iahinerobic NO accumulation
exceeds the calibration limit of the sensor. Aduiitilly, aerobic MO accumulation starts before
completion of the stripping of pre-existing dissdvN,O. In these cases, the average dissolved
N,O concentration of the cycle, was calculated cangig the period from the first minimum of
dissolved NO concentration until the end of aeration (or aB@min if a local minimum did not
exist). Additionally, initial NO accumulation was assumed to be equal to 0.6 rtay/krage

minimum after initial NO stripping observed in these cycles).

In practice, the methodology followed was not éinas it is illustrated in Figure 2; it involves
several backward and forward loops between theerdifit steps. The feedback loops were
necessary to leverage the knowledge discovere@ddjndt the data-preparation (i.e. new features

extraction, different pre-processing) and mininggds.
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[Figure 2]

2.2.1 Support Vector Machines classification and Support vector regression

Support vector machines (SVMs) are a range ofersiged non-parametric classification and
regression algorithms that have various applicatiom several fields including hydrology
(Raghavendra and Deka, 2014), bioinformatics (Bywatnd Schneider, 2003) and wastewater
(Corominas et al., 2018). For instance, in wastewatupport vector regression (SVR) has been
successfully applied to data generated from mestiannodelling of biological processes (Fang

et al., 2011) or to experimental data (Seshan 2@14) to predict reactors’ performance.

SVM classification and SVR models were construt¢tegdredict the behaviour of dissolved
production/consumptioimn different phases of the SBR operation (FigureS2M aims to define
an optimum separating hyperplane in the featureesplzat maximizes the margin between two
different classes. Classes with large margins kpaly separable and provide a ‘safety’ for the
generalisation of the algorithm when applied to npeints. In practical applications, the
overlapping of a number of data belonging to the tlasses, is common. Therefore, soft margins
are introduced to allow a number of misclassifmagi to identify feasible solutions when the
training dataset is not strictly linearly separalf@milarly, in the SVR case, the aim of the
method is to identify the hyperplane that has tinmmum distance to all data points. A complete
description of the SVM and SVR algorithms is praddin the supplementary material. Radial
basis function (RBF) was selected to constructntioglels in this study. The ‘kernel trick’ and
enables SVMs to operate even in infinite featuracep(where data are mapped), without in

practice executing calculations there (Luts et24l10).

The algorithms were implemented with the kernlalbkpge (Karatzoglou et al., 2004) in R

software. Repeated 10-fold cross validation (3 tiepes) was applied to select the cost and

10
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gamma ¢) regularization parameters over a grid-search thighcaret package (Kuhn, 2008). The
cost determines the penalty of misclassified ircaror instances violating the maximal margin
whereay determines the amplitude of the kernel. The daiease randomly divided into test and

train, with 70% of the available data used forrtirag the SVM model and 30% used for testing.

In the classification case, over-sampling was &gpfor the minority classes within the 10-fold
cross validation loop (before training). Local misdeere developed based on observations from
each phase of the SBR reactor instead of the ddtase the duration of the whole cycle. The
underlying characteristics and dependencies ofofierational variables vary between anoxic,
aerobic and anaerobic conditions. Additionally, rexformance of the system under different
phases within the cycle can also vary. There ayeifgiant benefits in the development of local
phase-based models. The behaviour of dissolw€ ahd triggering operational conditions vary
between the different phases; local models enablimvestigate the phase-based dependency
structures that would not be possible using thelsvloycle dataset. The performance of the
classification SVM models were evaluated basedaoaracy and kappa and from the sensitivity
and specificity as described in the supplementapteral (S3.1). Similarly, the regression
models were evaluated considering the root meaarseduerror (RMSE) and R-squared”(R

(S3.1).
3. Resultsand discussion
3.1 SCENA performance

The SBR treats up to 43 kg of N/day of anaerobjpesuatant, which results in a volumetric
nitrogen loading rate up to 0.78 kgN/miay. The performance of the SBR reactor in terfns o
NH4-N removal, was stable during the monitoring campaDuring system’s normal operation

(January 2019 - April 2019), the average removiidieficy of NH,-N, TN and PQ-P was 78%,

11
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~77% and 84% respectively. Influent and effluemaamntrations of the SCENA system for the
duration of the monitoring campaign are providedTable 1. A detailed description of the

abnormal cycles isolated is provided in the suppletary material
[Table 1]

3.2 N,O Emission factor

N,O emissions were measured using a gas analysecliMafpril 2019); on average ~0.8 kg of
N,O-N was emitted in each cycle, equivalent to 7.6%he NH-N load in the SBRR. In terms
of the NH-N removed the BO EF was equal to 11% (+4). The emissions durirggabrobic
phase were considered,® emissions exhibited significant variability rangifrom 0.14 kg
N,O-N/cycle (1.3% of NN load) to ~2 kg BO-N/cycle (19% of NEN load) as shown in
Figure 3 (a). Emission peaks higher than 1.5 k§-N/cycle and the increasing trend observed
close to the end of the monitoring campaign coimeiith peaks in the conductivity change in the
aerobic phase of the cycles (Figure 3 (b)). Lalwoyatinalyses performed approximately four
times per week, did not demonstrate any significdrainges in the influent COD, N loads
and removal efficiencies linked with the increastrend of the emissions observed in Figure 3
(a). Given the wide range of the®lemissions observed in the system, in the follgvsactions,

efforts were focused to identify triggering opevatl conditions.
[Figure 3]
3.3 Energy consumption vs N,O emissions

The operational carbon footprint of the sidestrdam was estimated using the direct GHG
emissions (from BD) and electricity consumption. The electricity somption was relatively
steady over the monitoring period; on average &V was consumed in the SBR for the

removal of 1 kg of NN from the anaerobic supernatant. The averageggremsumption of

12
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the SBR represented ~77% of the total electricbpscimption of the SCENA system. On
average ~48.7 kg of GQyare generated for the removal of 1 kg of A¥due to the direct O
emissions and electricity consumption in the systEhe contribution of the total @ emissions
to the operational carbon footprint of the S.C.B.Idrocess ranged from 66.7% to 96.8% when
all the equipment electricity consumption (i.e.nfienter, dynamic thickener) were considered.
Given the variability of the PO emissions observed in the system (Figure 3) thefk CQxq
emitted per kg of NN removed ranged between 9.5 kg £ 117.7 kg CQ, Figure 4 (a),
shows the average operational carbon footprintgjdening direct BNO emissions and electricity
consumption) of the SCENA system for two cases ditierent ranges of D emissions. In the
first case (26/03), a considerable amount gbNvas emitted, equal to ~10.5% of the influent
NH4-N load. In the second case, the emissions wergfisantly lower, equal to ~4% of the
influent NH,-N load. Both cases are characterised by similluent NH,-N concentrations,
phase duration, temperature and ammonia removelegities (~79%). The DO concentration is
equal to ~1 mg/L. In case 1, the operational cartoatprint of the process is ~136% higher
compared to case 2. This example shows that umehdais conditions (considering laboratory
analyses, average pH and DO), dissolve@ Noncentrations can vary significantly in the stdd
system. Investigation of the behaviour of condusstiduring the two aerobic phases, showed
higher conductivity and pH decrease in case or&luS/cm and ~1 respectively) compared to
case two (~35QuS/cm and 0.7 respectively) (Figure 4 (b) and (&dditionally, the initial
aerobic ORP in case 2, was higher (-43 mV) comp#oedase 1 (-274 mV) (Figure 4 (b)).
Therefore, efforts to understand theONtriggering operational conditions and mitigate @GH
emissions, should consider the dynamic in-cycleabielur of the variables monitored in the
system. The relationship between the operationadivias (i.e. DO, NgN concentration, ORP,

conductivity) will be discussed in the followingcsiens.

13



291 [Figure 4]

292 3.4 Variability of N,O emissions during normal operation

293 N,O was emitted during aeration phase in all cycled aorrelated significantly with the
294 dissolved NO accumulation. One representative cycle profile the dissolved PO
295 concentration and JO emissions in cycles starting without dissolvefDMccumulation from the

296 previous cycle is shown in Figure 5, together whita DO, NH-N, conductivity, ORP and pH.

297 ORP at the beginning of the aerobic phase showsermelation with the DO, whereas,®
298 accumulation is minimum. Dissolved,® increases in the first 60-70 min of aeration rtalé
299 change in the pH slope can be seen coinciding thidlpeak of accumulated.®) indicating that
300 the generated }D generation is higher than the strippedONN,O accumulation shows a
301 decreasing trend after ~90 minutes of aeration.s&ulently dissolved J@ concentration
302 increases when aeration stops, and the anoxic #tags. This shows that production ofON
303 continues under decreasing DO and until DO deplefidhe calibration range of the dissolved
304 N,O probe is between 0 - 2.6 mg/L. Therefore, theiaedation of dissolved pO can be higher
305 than the peak shown in Figure 5. During the anpRigse, pH increases rapidly during the dosage
306 of fermentation liquid, followed by a slow decreagson the end of carbon dosage phase. A
307 sudden change in the ORP signal slope (‘nitriteeRniadicates the depletion of nitrite whereas
308 TN still exists in the form of BD. Accumulated BD is subsequently depleted rapidly after NO

309 N depletion.

310 [Figure 5]

14



311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

3.5 Thepattern of N,O emissions

Offline data from laboratory studies and the rangfethe operational variables were analysed in
order to investigate significant changes that douate to high accumulation of dissolvedON

concentration and high® emissions.

Figure 6 (a) shows the daily average dissolve® Noncentration (coloured points) during
aerobic phase versus conductivity at the end obléerphase and the effluent BN
concentration. Conductivity is significantly reldteand can be linked with the N
concentration in the reactor (spearman correlatioafficient equal to 0.97). High average
aerobic dissolved D concentration (>1.5 mg/L) was mainly observed hwiNH,-N
concentrations lower than 150 mg/L and higher tB8O mg/L in the effluent of the SBR.
Additionally, the spearman correlation coefficididtween dissolved O and average aerobic
conductivity decrease ratg/cm/min) was equal to -0.7 andl concentration peaks were
observed for conductivity decrease rate > g®cm/min. The latter indicates that higher
emissions occur under high ammonia removal eff@yehat can be linked with higher ammonia
oxidation rates (AOR) (i.e. due to pH values obsdrv~ 8) triggering the N}DH oxidation
pathway or higher than average NO accumulation (triggering nitrifier denitrificatio
pathway). Domingo-Félez et al., (2014) found thaiONproduction rates were positively
correlated with the extant nitrification rate in single-stage nitritation/Anammox reactor.
Similarly, Law et al. (2011) identified a lineatatonship between AOR and.® emissions in a
partial nitritation SBR reactor treating the rejeetter from anaerobic digestion. Law et al. (2011)
suggested that is attributed to higher accumulatibthe ammonium oxidation intermediates
(hydroxylamine (NHOH) and nitrosyl radical (NOH)) leading to fastBlkO formation or to the
increased use of electrons reducing nitrite tdmndkide (nitrifier denitrification pathway) under

low DO concentrations. High nitrite accumulationshiaeen also linked with elevatedQN
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emissions and the nitrifier denitrification pathwagspecially under low DO concentrations
(Tallec et al., 2006; Kampschreur et al., 2008;|@mser et al., 2011; Peng et al., 2015; Massara
et al., 2017; Law et al., 2012). For instance, Retrg. (2017) and Kampschreur et al. (2009), in a
nitritation-denitritation SBR and a full-scale dieg stage nitritation-Anammox reactor
respectively, identified linear relationship betwesitrite accumulation and - emissions at
DO levels below 1.5 mg/L. Similarly, Tallec et 2006) in a nitrifying activated sludge observed
eightfold increase of YO emissions with the addition of nitrite pulses (@@/L) at DO equal to 1
mg/L. Therefore, both hydroxylamine oxidation arw tnitrifier denitrification are possible

during aeration in the investigated SBR.

The average dissolved,® concentration during the aerobic phase of diffei®ycles varied
significantly in relation to the average DO coneatibn. Figure 6 (b), shows that the dissolved
N,O concentration peaks coincided with average DQ@ewoinations less than 0.9 to 1 mg/L. The
spearman correlation coefficient between dissoMgd and DO concentrations was equal to -
0.7. The coloured points in the Figure, represeatQRP at the end of the aerobic phase; ORP is
higher than 40 mV in the majority of the cycles lwiaverage aerobic dissolved,(N
concentration less than 1 mg/L. Only cycles withodissolved NO accumulation from the
previous anoxic phase are shown in the graph. ®tenst al. (2014) showed decreasing DO
concentrations lower than 1-1.5 mg/L are linkedhwitigher nitrite accumulation and are
positively correlated with PO emissions during nitrification in a full-scaleepenitrification-
nitrification SBR treating anaerobic supernatarimifrly, Pijuan et al., (2014) reported an
increase of PO emissions in a nitritation reactor with the retut of DO from 4 to <1 mg/L.
During the monitoring period, blowers operated atximum flow-rate. Therefore, the presence
of residual biodegradable COD concentration in #erobic, is expected to decrease DO

concentration. Similarly, higher influent NHoads or higher ammonia oxidation rates (that can
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also result in increased NGaccumulation) can impact the DO concentratiorhandystem. The
dissolved NO concentration can be affected by a combinatioradfbles; therefore, it cannot be
deduced that the decreased DO is the sole conigpdhctor triggering the increased,®

generation observed.

[Figure 6]

3.6 Impact of accumulated N,O in the end of anoxic and anaer obic phase

Several parameters have been reported to affedtizBeaccumulation under anoxic conditions,
such as the inhibition of the nitrous oxide redsetéNos) by free nitrous acid (FNA) or high
accumulation of N@, the electron competition between electro accemod the type of carbon
source (ltokawa et al.,, 2001; Pan et al.,, 2013;uZlkeb al., 2008; Zhu and Chen, 2011).
Additionally, low values of COD/N can result in omplete denitritation and therefore
accumulation via the heterotrophic denitrificatipathway during the anoxic phase of the SBR.
Accumulated MO in the end of the anoxic phase is stripped instiigsequent cycle, increasing
the NO emissions. Caranto et al. (2016) have recehtiyved that BO can be the main product
of anaerobic NKDH oxidation catalysed by the cytochrome P460 ireiNppaea. The latter can
be an evidence of the biologica)® generation under limited DO and high NH3 conaiuns,
both conditions occurring in the target systemhia during the transition from aerobic to anoxic

phases when JD accumulation rapidly increases.

In this study, the average soluble COD concenmatinthe fermentation liquid was equal to
13082 mg COD/L over the monitoring period (TableQyerall, in >27% of the examined cycles
the NO was completely consumed by the end of the anpkise. Zhu and Chen, (2011),
showed that the use of sludge alkaline fermentadi®rcarbon source in an anaerobic-aerobic

system treating high-strength stream, can redue®i® production by up to 68.7% compared to
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alternative carbon sources (i.e. acetic acid). @ndther hand, Li et al., (2013a) in a process
utilizing PHA as internal carbon source, observighér NO production and reduction rates at
higher influent COD concentrations linked with héghanaerobic PHA synthesis (ranging from
100 to 500 mg/L). The higher,® production rates were attributed to the accuradl®&Q

inhibiting the NO reduction.

The dissolved BD concentration in the anoxic phase exceeded thbratéon limit of the
sensors; only cycles in which “nitrite knee” wassetved and O reduced to values lower than
2.6 mg/L could be investigated. Therefore, theatften NQ in anoxic NO generation could not
be studied. However, studies have shown that eddUd concentrations during denitrification
can reduce the denitrification rate and increagseNl© accumulation (Schulthess et al., 1995).
The electron competition between nitrite reductdd®, nitric oxide reductase (NOR) and nitrous
oxide reductace (NOS) is intensified under high,Néncentrations; NOS is less competitive
under limitation of electron donor and this wilktdt in N,O accumulation (Pan et al., 2013; Ren

et al., 2019).

Based on the profiles shown in Figure 5 ;0Nvas always consumed after the depletion 0f NO
during denitritation; specifically, dissolved ;@ concentration decreased after the “nitrite knee”.
Gabarré et al. (2014), studied a partial-nitritatr@actor treating landfill leachate, and operated
under alternating aerobic/anoxic conditions to vallbeterotrophic denitritation. The authors
demonstrated that significant,®@ accumulation was observed during anoxic periotdO,
denitrification rate was higher under both biodegtde COD limiting conditions and after
acetate addition compared to,(N reduction; NO reduction rate was maximum after NO
removal (similar to what was observed in this sjudp denitrifying phosphorus removal
processes, Li et al. (2013) showed that th&® Miccumulation can be higher compared to

conventional denitrification; the authors suggestedt in the electron competition between
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406 denitrifying enzymes and PHA, ,0 reductase is less competitive. On the other hRiigkra-
407 Guardia et al. (2016) investigated the electronpetition during denitrification (PHA as the sole
408 carbon source) of enriched dPAO and dGAO biomadsf@amd that higher PO accumulation
409 in the latter culture. Additionally, the last stefpdenitrification was inhibited in dGAO cultures (
410 N,O accumulation up to ~84% of the N-reduced), uridgh levels of NG (~ 15 mgN/gVSS)
411 whereas MO consumption in dPAO biomass was not affected. §\&ral., (2015) demonstrated
412 that during denitrifying phosphorus removal, mitiga of NO, accumulation is possible via
413 continuous dosage of phosphate and nitrate. Waab, €2011), showed that optimisation of the
414  synthesis of PHA during the anaerobic phase caigaiidt the MO production during the anoxic

415 phase leading to complete denitrification.

416 In the system, PbD emissions and dissolved®l concentration at the aerobic phase is strongly
417  related with incomplete denitritation in the praxéacycle. In ~26% of the cycles with incomplete
418 denitritation, the BO concentration did not decrease below ~2 mg/lhénanaerobic phase and
419 therefore the stripping of accumulatedONin the subsequent aerobic phase was substantial.
420 Figure 7 (a) shows representative profiles of tissalved NO concentration and the,®
421 emissions based on different initial concentratiohsl,O in the beginning of the aerobic phase.
422  The profiles of the ORP, DO and pH are comparabléhe preseted cycles (Figure 7 (b)). In
423 cycle B ~0.56 kgN of BD were emitted during the aerobic phase, wheareaydle A NO

424  emissions are equal to 0.33 kgN (given the duratibthese cycles is not equal only 220 min
425  were considered). The initial dissolvedONconcentration in cycles A and B is equal to (a@d
426  >2.6 mg/L respectively. The ® emissions increased significantly due to the axdated NO

427  at the beginning of the previous anoxic phasewlat stripped at the beginning of aeration.

428 Overall, in ~72% of the cycles, the dissolvegDNtoncentration at the beginning of the anaerobic

429 phase was higher than 0.3 mg/L. In cycles withalsxl NO concentration higher than 0.3

19



430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

mg/L at the beginning of the anaerobic phase, bamge in dissolved JD concentration during
the anaerobic phase was highly correlated withQR€® at the beginning of the anaerobic phase.
Additionally, the spearman correlation coefficidrgtween the magnitude of the ORP reduction
and magnitude of the dissolvedreduction was equal to 0.7. Figure 8 shows thelots of
dissolved NO reduction in relation to initial anaerobic ORRIdBRP change for two cases: i)
negligible dissolved MO change mainly due to influent dilution or anaérotiissolved N20O
concentration > 2.6 mg/L, and ii) occasions witfON-eduction during the anaerobic phase. In
Figure 8 (a) only occassions with ORP decreasechititan -50 mV are shown. The presence of
nitrites in the bulk liquid during the (anaerobp)ase affected the ORP. M@ depletion in the
bulk liquid resulted in a sharp “nitrite knee” ihet ORP profile (similar to the one observed
during the anoxic phase. Therefore, higher ORP ghamas expected in cycles with N®

depletion and D consumption during the anaerobic phase.

[Figure 7]

Anaerobic phase term, is used to describe thedjprstational phase of the SBR (Figure 1) within
each cycle and might not represent the actual tondiin the reactor. For instance, ORP ~ -80
mV in the anaerobic phase of the SBR indicates ianoanditions, due to residual N®

concentration from the previous anoxic phase ofé¢aetor.
[Figure 8]
3.7 Prediction and control of N,O accumulation in the anoxic and anaer obic phases

As discussed in section 3.6, the behaviour of ORP significantly related with the behaviour of
NO, and consequentially of the dissolvedONconcentration during the anaerobic phase.

Therefore, in the ANSVM model, features relatechviiie ORP profile were mainly used (Table
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2). Similarly, there was a strong link with the OR&haviour and the nitrite “knee” with the®l
accumulation during the anoxic phase. The featcwesidered in ANOXSVM model are shown

in Table 2.

[Table 2]
The classification matrices for train and test gats of the ANSVM and ANOXSVM models are
presented in Table 3. The average classificatieuracy for the ANOXSVM model, was equal
to 99% and 97% for the test and validation datassisilar results were obtained for the

anaerobic phase with 95% and 98% accuracy in #ie &nd test datasets respectively.

Jaramillo et al. (2018) developed an SVM classifierestimate online the end of partial
nitrification in a laboratory aerobic-anoxic SBRskd on features extracted from pH and DO
sensors over time-windows, resulting in 7.52% ré&dodn the operational time. In this study, the
main focus was to estimate offline the behavioulg emissions based on historical batch data.
The results from this study indicate that ORP ahtdgensor data can be used to detect the
consumption of BO during the nitritation/nitrification in SBR reacs. The results show that
knowledge-based feature-extraction and SVM clasgifin could help in explaining the
behaviour of the system and potentially optimise tontrol to consider the consumption of
accumulated BO (i.e. in this system the denitritation can beppt after the local maximum of

the ORP rate after the nitrite “knee” in all thelgg investigated.)
[Table 3]

Figures 9 (a) and (b) illustrate the predicted amhsured MD concentration at the end of the
anaerobic phase (ANSVR model). The SVR parameters wptimised based on the root mean
square error using the train dataset. RMSE of ¥R Siodel was equal to 0.11 and 0.1 mgPN

N/L for the train and test datasets respectivehsgRared equal to 0.85 and 0.75 respectively).
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As shown in Figure 9 (b) the simulation resultddal the behaviour of the actual dissolvegN
concentrations observe®ne of the major factors affecting the performamsehe limited

number of data points, but the prediction is siilturate.

[Figure 9]

3.8 Prediction of the N,O concentration in aerobic phase

The input features are shown in Table 4 and welectgsl based on the identified influential
variables. The BD predicted values of the ANSVR model were useadd®). The procedure
followed for the selection of model parameters wiaslar to the respective one followed for the
anaerobic phase. Additionally, ANSVR test datagetes, were identified and used in AERSVR

test dataset A. The model was also applied in 8egsles (test dataset B).

[Table 4]
Figure 10 (a), shows the predicted and measurethg&eaerobic pD concentration for the
trained and test datasets. RMSE of the SVR modslegaal to 0.06 and 0.11 mg®N /L for
the train dataset and test dataset A respectivdlgreas the R-squared was equal to 0.94 and

0.82 (Figure 10 (a) and (b)).

[Figure 10]

The RMSE of the predicted values for the test datBs was equal to 0.29 mg®-N/L and the
R-squared was equal to 0.72 (Figure 10 (a)). Th&®¥R model underpredicted the average
dissolved NO concentration of test B dataset. This is expegteeh that in test B dataset cycles,
the initial aerobic MO accumulation exceeds the sensor calibration .lifttierefore, on many
occasions the initial aerobic N20 accumulation ais® underestimated (section 2.2.1 - anaerB

cycles). An example is shown if Figure 11. In cyBlethe average dissolved,® concentration
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(calculated as discussed in section 2.2.1 for &ageles) is equal to 1.33 mg/L. The AERSVR
model predicted 0.87 mg/L underestimating the dactu@ncentration (considering initial
accumulation equal to 0.6 mg/L). In cycle B, theR$E/R model predicted D concentration
equal to 0.61 mg/L (considering initial accumulatiequal to 0.6); the observed average

dissolved NO concentration (after the local minimum), was é¢qoi®.6 mg/L.

[Figure 11]

The results show that under the investigated ojpewdt conditions, the framework shown in
Figure Error! Reference source not found. can provide a good estimation of the real dissblve
N.O behaviour and concentration observed during tifierent phases of SBR operation.
Instabilities in the performance of machine leagnmodels due to changes in the operational
conditions in wastewater bioreactors have beenrreghan the literature (Shi and Xu, 2018).
Therefore, long-term datasets and investigatiodiféérent patterns and dependencies should be

investigated before model construction.

3.9 Mitigation strategy

During aerobic phases, elevated average dissoly@dddncentration was linked with DO less
than 1 mg/L and increased conductivity decreasesré&tonductivity values represent NN
concentration values in the reactor). Thereforelesywith increased conductivity decrease rate
indicate higher NEN removal efficiency and N{N accumulation. Dissolved NO
concentrations lower than 0.6 mg/L were identifindcycles with average DO concentration
equal to ~1.36 mg/L, and conductivity decrease »ate8 uS/cm/min. Increasing the reactor DO
concentration to values higher than 1.3 mg/L caultein decreased aerobic,® generation
(Law et al., 2012). However, with the current aoher supernatant feeding strategy, blowers

operate at maximum flowrate, so it is not possiblecrease the aeration in the system.
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On the other hand, the implementation of a stegifgestrategy could foster the reduction of
N,O emissions thanks to the lower NN and free ammonia (FA) concentration at the &g

of the cycle, which has been recognized as a tiiggedactor for NO production (Desloover et
al., 2012). Conductivity at the end of the cycla eat as surrogate to estimate the effluen;-NH
concentration of the reactor and optimize the atdersupernatant feeding load. Consequently,
the aerobic initial NEN concentration could be controlled to avoid aitR& accumulation or

high AOR with subsequent,® generation.

Additionally, frequent alternation of aerobic/anoxihases can be introduced in order to avoid
high nitrite accumulation. The impact of nitritenoentration on BD production can be also
minimized by ensuring adequate DO levels within tleactor to inhibit the nitrifiers
denitrification pathway (Blum et al., 2018; Lawadt, 2013). Rodriguez-Caballero et al. (2015)
reported that in a full-scale SBR treating munitipastewater, intermittent aeration (alternation
between 20-30 min oxic and anoxic) led to a mination of NO compared to long oxic periods
that enhanced JD emission. The authors related this behaviourht presence of shorter

aeration times with subsequently lower nitrite aalation and MO production.

In addition, Su et al. (2019) reported that sligltidic or neutral pH in nitritation reactors (at
values that do not inhibit microbial activity) cdecrease PO generation by up to seven times.
Based on the pH profiles observed in this studgulegion of aerobic (alkalinity consumption)

phase duration can be also considered to conegbithat lower levels.

The developed models can be used to estimate yagil precisely the hard-to-measurgON
concentrations during aeration and detegd l[dccumulation in non-aerated phases. Additionally,
it can alert operators about cycles with anoxic anderobic BO accumulation and elevated

aerobic NO concentrations, that require modifications to glistem operation. The ANOXSVM
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model can predict if D is consumed in anoxic phases or if anoxic dunagtoould be extended.
Thus, additional provision of fermentation liquidrcbe performed to promote®l consumption
through denitritation, when after 70-90 minutes @hexic SVM model still indicates incomplete

denitritation.

This study provides evidence on the relationship©f ORP and conductivity and pH with the
dissolved NO concentration (in terms of correlation coeffi¢t&rbehaviour and thresholds that
indicate specific ranges of ,@ accumulation). These findings together with thedeis
developed in this study, can be the basis for theeldpment of intelligent control algorithms to
integrate emissions control in sidestream SBR oesgderforming nitritation/partial nitritation or
other systems similar to S.C.E.N.A. Moreover, fezglbased on ORP, pH, DO and conductivity
measurements in wastewater SBR processes, thatbeansed to predict dissolved,®l
concentrations have been identified. The develdmadework can be also tested in continuous

processes for the data-driven prediction gdNmissions.

Conclusions

Knowledge discovery and data-mining techniques vesnployed to extract useful information
about the dynamic behaviour of®l and to predict the behaviour of dissolveDMoncentration
in a full-scale SBR reactor treating the anaerobipernatant. The main conclusions are

summarized as follows:

* The NO emissions in SCENA process varies from 1.3% &0 1& NH,;-N load,
therefore they can contribute considerably to tperational carbon footprint of the

process (~90% on average).

e Average aerobic dissolved,® concentration could significantly under similaflient

loads, DO, pH and removal efficiencies. Extractinfprmation from the dynamic in-
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567 cycle behaviour of the variables monitored in tlystam is a significant step towards

568 understanding pO behaviour.

569 » Aerobic dissolved BD concentration peaks (>1 mg/L), were observedyiles with
570 average DO concentrations less than 0.9-1 mg/LGRE concentration at the end of the
571 aerobic phase less than 40 mV. Conductivity wasetated with the reactor NMN
572 concentration (0.97). JD peaks were also observed in cycles with elevdestease of
573 conductivity during aeration. Step-feeding, conwblinitial NH,-N concentrations and
574 control of pH via the regulation of aerobic phaseation can mitigate the  peaks
575 observed in this study.

576 * The accumulation of PO at the end of the SBR anoxic phase was strippethe
577 subsequent aerobic phase and had a significantctngpathe amount of XD emitted.
578 The accumulated D was consumed rapidly after nitrite ‘knee’ thatsviiaked with the
579 nitrite depletion. The ANOXSVM model can be usediatect if anoxic duration should
580 be extended or additional fermentation liquid pded to enhance & consumption in
581 anoxic phases.

582 » This study shows that low-cost sensors, converitionaed to monitor SBR systems (i.e.
583 pH, DO, ORP), have good capabilities to predict thesolved NO behaviour and
584 concentrations when couple with knowledge discovechniques. The AERSVR model,
585 showed reliable estimations of the aerob®©Noncentration and can provide guidance
586 to WWTPs operators, on whethepON levels are acceptable or mitigation actions are
587 required.
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Table 1: Influent and effluent concentrations & 8CENA system

Parameter unit mean Sd
NH4-N mg/L 992.5 90
PO-P mg/L 30.8 6.9
pH 8.2 0.2
In?I?JIZnt sCOD mg/L 1111.7 562
Flow-rate m/d 30 (8.4 per cycle) 2.2
Gas flow-rate m’h 450 (170 - 520) 78
Dimension mxXmxm 8x35x2.!
NH4-N mg/L 214.7 80.93
SBR NO,-N mg/L 3.23 9.7
Effluent NOs-N mg/L 0.28 0.34
PO,-P mg/L 6.78 2.22
pH 8.04 0.3
MLSS g/L 5.05 0.87
HRT d* 1.05
SBR SRT ot 15
Reactor pH 7.7 0.5
T °C 30.02 1.56
NH4-N mg/L 715 72.6
PO,sP mg/L 86 12
pH 5.6 0.6
. T °C 36 5.1
Fermenal sCOD mg/L 13082 2228
ferm_Hac mg/L 3250 546
ferm_HPr mg/L 2281 588
ferm_Hbut mg/L 1347 196
Flow-rate to SBR mcycle  7.45 (~2.41 per cycle) 3.0




Table 2: Features used in the classification algorithm to predict the accumulation of
dissolved N,O at the end of the anoxic and anaerobic phases

Anaerobic Anoxic Anaerobic regression
ORP phaseinitial Last ORP value ORP phaseinitial
ORP change ORP change ORP change
First local maximum ORP first
derivative Mean pH
Difference between first local
Local minimum of ORP first maximum (after carbon
derivative after first local dosage) and subsequent local  pH phaseinitial

maximum ORP first derivative

Duration between first local
maximum and subsequent local
minimum of the ORP first
derivative

pH phase initid

Time local minimum ORP first
derivative/Phase duration

minimum of the ORP first
derivative

Duration of carbon dosage

Duration between first local
maximum (after carbon
dosage) and subsequent local
minimum of the ORP first
derivative

Last ORP first derivate

Time of ORP first derivative
mi nimum/duration of phase

Difference between first local
maximum and subsequent
local minimum of the ORP
first derivative




Table 4: Features selected in the SVR model for the aerobic phase

Aerobic Features

Average conductivity rate

ORP end of aeration

ORP increase during aeration

Conductivity at the beginning of aeration

Average DO

pH at the beginning of aeration

Conductivity increase (based on the conductivity at the end of the aerobic
phase of the previous cycle)

pH change during aeration

Initial aerobicN,O concentration (based on ANSV R predictions)




Table 3: SVM classification results anoxic and anaerobic phases

Phase Dataset Misclassified Sensitivity Specificity Accuracy Kappa Class
(%)
Anoxic Train anoxA: 1 1 0.99 99 0.97 anoxA: Final
phase anoxB: 0 dissolved N,O
cycleN Test anoxA: 1 1 0.98 98 0.92  concentration end of
anoxB: 0 anoxic < 0.6 mg/L
anoxB: Find
dissolved N,O
concentration end of
anoxic > 0.6 mg/L
Anaerobic  Train anaerA:2 0.98 0.97 97 094  anaerA: N,O end of
phase aneerB: 1 anaerobic > 2.6 mg/L
cycleN+1  Test anaerA: 1 1 0.97 98 0.95
anaerB: 0 anaerB: N,O end of

anaerobic < 2.6 mg/L




S.C.EN.A Anaerobic ~30 min

Aerobic
Anoxic feeding ~220—-240 min

Anaerobic
supernatant > @

Settling Anoxic
~30 min ‘ ~60 — 140 min Size: 70 m3

Energy Dissolved and gaseous Sensor operational data Laboratory analyses
monitoring N,O monitoring (pH, ORP, Conductivity, T...) (NH4-N, NO,-N, COD...)

Fermentation
liquid

Figure 1. Schematic representation of a complete cyclein the S.C.E.N.A process and datasets

used in the analysis
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Figure 10: (a) Predicted vs measured dissolved N20 concentration (AERSVR) in the aerobic phase

for the train dataset, the test dataset A and the test dataset B and (b) comparison of predicted and
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[Dissolved and gaseous N,O

monitoring

Phase 1: Preprocessing—

Outliers detection

Phase 2: Analysis of
system behavior for

different phases

Phase 3: Modelling

In Class anoxA, in ~88% of
cases, N20 was consumed by
end of subsequent anaerobic
phase

Initial aerobic N2O

accumulation ~0

(\:'_'J Step1  >0.6 mg/L

Class
anoxB
Find subsequent
cycle (cycle N+1)

Step 2
<2.6 mg/L

Class
anaerB

Step 3

-
Sensor operational ] Laboratory ]
data data
\
[ Isolation of abnormal p=a | Removal of unique / low frequency
duration cycles / I—— | events and abnormal cycles
L DBSCAN ) 4
1 + Identification of patterns
- + Identification of dependencies between N20
Data explorat'lon and L-_- b emissions and operational variables
preparation v + Feature Extraction and selection
(" Classification model ) <0.6 mg/L * Anoxic phase classified in two groups— Class
(ANOXSVM) to predict Class C-_4 anoxA (N20 concentration < 0.6 mg/L) and anoxB
N20 concentration in the (N20 concentration>0.6 mg/L)
. anoxA
end of anoxic phase -
(Cycle N) ) Find subsequent
cycle (cycle N+1)
e — ~N =i | ©* ANSVM applied to detect cycles with dissolved N20O
Classification 1110_de]_ >2.6 mg/L Lay concentration below 2.6 mg/L at the end of anaerobic
(ANSVM) to predict if Class phase (calibration limit of the sensor)
dissolved N2O concentration anaerA. K « Anaerobic phases with accumulated N20 classified in
will be consumed by end of ! two groups— Class anaerA (N20 concentration > 2.6
kanaeroblc phase (Cycle N+1)J : 111 and anaerB (N20 concentration<2.6 m:
! |
s : A H
Regression model (ANSYR) - : ==&, | ANSVR applied to predict the N20 concentration at the
to predict N20O concentration Predicted ' |--'/ beginning of the aerobic phase
at the end anaerobic phase data; anaerP 1
\ (Cycle N+1) ) :
|
1
Regression model ! Predict average aerobic dissolved N20 concentration
(AERSVR) to predict N20 : considering initial accumulation (anaerP)
concentration at in aerobic -

phase considering initial N20O
accumulation, (Cycle N+1

Step 4: Results validation and

interpretation

Evaluate applied algorithm
accuracy

* Next step determination (i.e. loop back to
phases 2 and 3)

Figure 2: Methodological Framework followed in the study



100

T
<
o

- - o
(819A9/N-O2ZN B¥) 43

a) 0

75

50

25

Batch

-» e —
“ ° ¢
e *°.
bt [ ]
-oo~o .oo m
® ‘..
o ®
S
ooono o)
2, r~
) ofo
L4
e
‘oo et .:Ou
L v.
\J
..m... &
P 4 .®
° o”.
%
P
Lo
S g g 8 @
~ © st -

{woygn) asealosp AjAONPUOD

Batch
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Highlights
S.C.E.N.A N,O emissions contribute up to 97.3% to the operational carbon footprint
Stripping of accumulated N,O from the previous anoxic cycle increases emissions
Aerobic dissolved N,O concentration is correlated with DO and conductivity
Conductivity can be used to control SBR NH," concentration and N,O

N,O can be estimated as a latent parameter from other low-cost sensors
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